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ABSTRACT

This paper describes an analytical model, based principally
on Rent’s Rule, that relates logic architectural parameters
to the area efficiency of an FPGA. In particular, the model
relates the lookup-table size, the cluster size, and the num-
ber of inputs per cluster to the amount of logic that can be
packed into each lookup-table and cluster, and the number of
used inputs per cluster. Comparison to experimental results
show that our models are accurate. This accuracy combined
with the simple form of the equations make them a powerful
tool for FPGA architects to better understand and guide the
development of future FPGA architectures.

1. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have evolved con-
siderably since their introduction. A dramatic increase in
the number of available transistors has motivated research
in both academia and industry, leading to new logic block
structures, flexible embedded blocks, and complex intercon-
nect networks.

FPGA architectural enhancements are often developed
in a somewhat ad-hoc manner. Expert FPGA architects per-
form experiments in which benchmark circuits are mapped
using representative computer-aided design (CAD) tools, and
the resulting density, speed, and/or power dissipation are es-
timated [1, 2, 3]. Based on the results of these experiments,
architects use their intuition and experience to design new
architectures, and then evaluate these architectures using an-
other set of experiments. This is repeated numerous times,
until a suitable architecture is found. This process occurs
both within FPGA companies as new generations of devices
are developed, and within academia, as new architectural in-
novations are investigated.

During this process, there is virtually no body of theory
that architects can use to guide their investigations. Previous
studies have produced empirical “rules of thumb” (such as
the best logic element size), however, these rules of thumb

usually provide no insight into the underlying tradeoffs be-
tween flexibility and density, speed, and power dissipation.

Such insight, however, would be extremely valuable for
two reasons. First, understanding the relationships between
architectural parameters enables early-stage architecture de-
velopment [4] in which the design space can be searched
quickly using analytical models. Once a promising region of
the architecture space has been identified, traditional exper-
imental methods can be used to choose precise architectural
parameters. This would significantly accelerate the FPGA
architecture design process. It may also allow the study of
a wider variety of “interesting” architectures since experi-
mental CAD tools need not be developed for each architec-
ture under consideration. Second, the development of such
theory will encourage researchers to understand why certain
architectures work well, and may eventually provide bounds
on the capabilities and efficiencies of programmable logic.

This paper is a step towards such a body of theory. Specif-
ically, this paper presents an analytical model that describes
the relationship between logic block and cluster parameters
and the area-efficiency of the resulting FPGA. The inputs
of the model are the lookup-table size, cluster size, and in-
puts per cluster. The outputs are (1) the expected number of
two-input logic gates that can be packed into each lookup-
table, (2) the expected number of lookup-tables that can be
packed into each cluster, and (3) the expected number of
inputs of each cluster that are used. The first two outputs
can be used to deduce the density of an FPGA implemen-
tation, while the third output can be used as an input to the
channel width model presented in [4]. Together with [4],
our model can be used to quickly evaluate a wide variety of
lookup-table/cluster architectures, without requiring time-
consuming empirical experiments.

This paper is organized as follows. Related work and
preliminary background are described in Sections 2 and 3,
respectively. The model itself is described in Section 4, and
it is validated against experimental results in Section 5. Sec-
tion 6 gives an example of how the model can be used as a
tool in FPGA architectural investigation.
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2. RELATED WORK

Several previous publications have described analytically-
derived relationships between FPGA architectural parame-
ters. Much of the work focuses on the routing fabric. El
Gamal derives a model that relates that relates the area re-
quired for routing to the total number of pins in the logic
gates [5]. Although this work was originally designed to de-
scribe a non-programmable chip, the model has been used
in the design of numerous generations of FPGAs [6]. Work
by Brown et al relates various parameters that describe an
FPGA routing architecture to the routability of that archi-
tecture [7], and more recently Fang and Rose related the
same architectural parameters to the channel width of an
FPGA [4]. Pistorius and Hutton relates the Rent parameter
(the Rent parameter is a measure of the “complexity” of the
interconnect pattern in a circuit [8]) of a circuit to various
architectural parameters [9].

There has also been much work on interconnect predic-
tion. Early work by Donath [10] and others related the area
requirements of routing wires to the Rent parameter of a cir-
cuit. Later work by Stroobandt refined the models to con-
sider more realistic network topologies and architectural as-
sumptions [11]. More recent work has produced more accu-
rate estimates of routing area using more information from
the circuit to be implemented [12].

The previous work closest to ours is by Gao et al, who re-
lates lookup-table size to area in a non-clustered FPGA [13].
Compared to that work, we consider clustered architectures
(which are more representative of real FPGAs) and use clus-
ter architectural parameters in our equations.

3. PRELIMINARIES

3.1. Guiding Principles

Three principles guided us in the development of this model.
First, we endeavored to develop the model by deriving

relations analytically, without relying on curve-fitting or ex-
perimental techniques. This ensures that we are capturing
the “essence” of programmable logic, and not creating a
model that is limited to a particular CAD flow or tool suite.
As will be discussed in Section 4, all aspects of our model
were derived analytically1 except for one parameter, γ.

Second, since we wish to derive relations between archi-
tectural parameters, we attempted to create a model that is
independent of the circuit to be implemented on the FPGA.
For example, we would prefer a relation between block size
and cluster size that is independent of the circuit to be imple-
mented. This is different from much prior estimation work,
in which the goal is to predict the area, speed, or power for a

1Technically, Rent’s Rule is an empirical expression, yet we use it as
part of our analytical derivation. Rent’s Rule is well accepted, so we do not
feel it violates the spirit of this guiding principle.

Table 1. Model Parameters
Architectural Parameters:
K Number of inputs per lookup table
N Number of lookup tables per cluster
I Number of inputs per cluster
Circuit Parameters:
p Rent parameter of a given circuit
n2 Number of 2-LUTs in a given circuit
Implementation Parameters:
nk Number of K-LUTs needed to implement a given circuit
nc Number of clusters needed to implement a given circuit
c Average number of LUTs packed into each cluster (c = n2/nc)
i Average number of inputs used in each cluster
o Average number of outputs used in each cluster
f Average fanout of all nets in the circuit
γ Average number of inputs not used in each LUT

given circuit [12]. That being said, it is impossible to com-
pletely ignore the impact of the circuit; we describe our cir-
cuit using the Rent Parameter and size of the un-techmapped
circuit.

Third, we attempted to balance the complexity of our
equations with their accuracy. We feel that simple equations
provide significantly more insight into architectural trade-
offs than expressions which are unnecessarily complex.

3.2. Model Parameters

Table 1 summarizes the parameters used to describe the ar-
chitecture, circuit, and implementation. In general, upper-
case letters are used for architectural parameters, and lower-
case letters are used for circuit parameters and parameters
that describe the implementation of the circuit on a given
architecture.

4. MODEL DERIVATION

Although our goal is to model architectures, our model mir-
rors the CAD flow used when mapping circuits to FPGAs.
The first part of our model mirrors the process of technology
mapping, in which 2-input gates are mapped to K-LUTs.
This part of the model can be used to compute the num-
ber of K-LUTs needed to implement a circuit as a function
of K. The second part of the model mirrors clustering, in
which K-LUTs are packed into clusters with a pre-defined
capacity and a pre-defined number of unique inputs [1]. The
inputs of this part of the model are the number of K-LUTs
in a circuit as well as the cluster parameters N (the capacity
of each cluster) and I , the maximum number of available
input pins on each cluster, and the outputs are two quantities
that describe the clustering: the expected number of LUTs
that can be packed into each cluster, and the expected num-
ber of inputs to each cluster that are used. In the following,
we focus on each part of the model separately.
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4.1. Number of K-LUTs to implement a circuit

We first model the process of technology mapping. Consider
an un-techmapped circuit consisting of n2 two-input LUTs.
During technology mapping, these n2 gates will be mapped
into a smaller number of LUTs, which we will denote nk.
In this section, we seek a closed form expression for nk.

Consider a portion of the un-techmapped-circuit consist-
ing of x two-input gates (1 < x ≤ n2). Denote the number
of signals that connect across the boundary of this region as
y. Since each gate has three pins (two inputs and one out-
put), we can use Rent’s Rule [8] to write:

y = 3xp (1)

where p is the Rent parameter of the circuit. Now suppose
this same region is mapped to z K-LUTs using a technol-
ogy mapping algorithm. The number of signals that connect
across the boundary of this region is still y. The number of
pins used in each K-LUT is 1 + K − γ (the first two terms
correspond to the output and K inputs, and the final term, γ,
will be described below). We can then write

y = (K + 1− γ)zp (2)

Since y is the same in both equations, we can eliminate y to
get

z

x
= p

√
3

K + 1− γ
. (3)

In other words, every z K-LUTs can implement x 2-LUTs
in the original circuit. Intuitively, this ratio is a measure of
how much logic can be packed into each lookup-table.

Finally, using Equation 3, we can write:

nk = n2
p

√
3

K + 1− γ
(4)

The term γ in Equations 2 to 4 arises because not all
K inputs are always used in a K-LUT. γ is the expected
number of inputs to a K-LUT that are not used. We have
not found a way to accurately model this analytically, how-
ever, experimentally we have found that γ (as a function of
K) is extremely consistent across all benchmark circuits we
considered. Table 2 shows our measured values of γ; the
derivation of a closed form for this expression is an interest-
ing topic of future work.

Table 2. γ values from 20 MCNC benchmarks
K 2 3 4 5 6 7

γ 0.000 0.261 0.466 0.701 0.996 1.232

4.2. Number of clusters needed to implement a circuit

We next model the process of clustering. Consider a tech-
nology mapped circuit consisting of nk K-LUTs. During

clustering, these nk LUTs will be packed into a smaller
number of clusters, which we will denote nc. In this sub-
section, we seek closed-form expressions for nc. In the next
subsection, we derive an expression for the expected number
of inputs used per cluster, i.

Each cluster can contain up to N LUTs and have up to I
unique inputs. In an architecture with a large value of I and
small value of N , it is likely that most clusters will be com-
pletely filled, while in architectures with a small value of I ,
some clusters may not be completely filled, because of the
limitation on the number of unique inputs. Since we wish
our model to apply to both types of architectures, we con-
sider each case separately below. We also define an equation
for the boundary between the two cases2.

4.2.1. I-Limited Clustering

We first consider architectures in which I is small, and the
expected number of LUTs packed into each cluster is dic-
tated by the number of physical pins on each cluster. In this
case, the expected number of LUTs packed into each cluster,
c = nk/nc, will be smaller than the capacity of the cluster
N . To estimate c, and hence nc, we employ Rent’s Rule
as follows. Consider the same region of the technology-
mapped circuit from Section 4.1 which contains z K-LUTs
and has y signals that connect outside the region. When the
same region is mapped to clusters, we can write

y = (i + o)vp (5)

where v is the number of clusters needed for this region
(v ≤ z), i is the average number of used inputs per clus-
ter, and o is the average number of used outputs per cluster.
The latter quantity can be written as o = i/f where f is
the average fanout of the circuit (this term will be computed
below). Thus, we can write:

y = i(1 +
1
f
)vp (6)

Eliminating y from Equations 2 and 6 and solving for nc

gives:

nc = nk
p

√
K + 1− γ

I(1 + 1
f )

, (7)

and

c =
p

√
I(1 + 1

f )

K + 1− γ
(8)

2Note that in real FPGA implementations, regardless of N and I , some
clusters will be full and some will not be. We could model this by consider-
ing a distribution of packing capacities rather than a single expected value.
We have chosen to model a single expected value, since we feel it provides
simpler equations, and thus more insight into the underlying tradeoffs be-
tween the architectural parameters.
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The fanout f in Equations 7 and 8 can be calculated using a
formula from [14]:

f =
1− (fmax + 1)(p−1)

1− (fmax + 1)(p−2) − φ(p, fmax)
− 1 (9)

where:

φ(p, fmax) =
fmax∑
n=1

np

n2(n + 1)
, (10)

and fmax is the maximum fan-out written as:

fmax = [(i + N)
nk

N
(1− p)](1/(3−p)). (11)

In Equation 11 we approximated the number of outputs as
N and the number of clusters as nk/N ; experimentally, we
have found that the fanout is only a weak function of fmax,
and thus these approximations lead to only a small error.

4.2.2. N -Limited Clustering

This case is trivial. Since cluster input pins are plentiful,
clusters can be filled to capacity. Hence, c = N and

nc =
nk

N
(12)

4.2.3. Boundary Condition

For architectures in which c < N , clustering is I-limited,
otherwise it is N -limited. Using Equation 8, we can write
the following condition that indicates that clustering is I-
limited:

p

√
I(1 + 1

f )

K + 1− γ
< N (13)

This can be rearranged to produce:

I < Np K + 1− γ

1 + 1
f

(14)

For all values of I in which Inequality 14 holds, clustering
is I-limited.

4.3. Average Number of Used Inputs

Again, we consider I-limited and N -limited architectures
separately. The boundary condition between the two types
of architectures is the same as in the previous section.

4.3.1. I-Limited Clustering

In these architectures, we would expect all cluster input pins
to be used. Thus, we can write

i = I (15)

4.3.2. N -Limited Clustering

By applying Rent’s Rule to a single cluster, we obtain:

i + o = (K + 1− γ)Np, (16)

since a cluster has N K-LUTs that each has (K +1−γ) I/O
pins and i + o number of exterior pins.

By substituting o = i/f into (16) and solving for i, we
obtain

i =
(K + 1− γ)Np

1 + 1
f

. (17)

5. MODEL VERIFICATION

To evaluate the accuracy of our model, we compare the model
predictions to experimental results.

Figure 1(a) illustrates the accuracy of our technology
mapping model. The experimental results were obtained
by averaging the results for twenty large MCNC benchmark
circuits. Results for two different technology mapping al-
gorithms are shown. The analytical results were obtained
from Equation 4 using the average Rent parameter from all
benchmark circuits. As the graph shows, the analytical re-
sults track the experimental results very closely.

Figures 1(b) through 1(d) illustrate the accuracy of our
clustering model. Figure 1(b) shows the ratio n2

nc
as a func-

tion of cluster size. In all cases, we set K = 4, and I to be
0.88N + 3.2 from [4] (this ensures that our clustering is I-
limited, which is the interesting case for this graph). The an-
alytical results were obtained using Equation 7 and 4, while
the experimental results were obtained using two separate
clustering algorithms, T-Vpack [1] and our implementation
of iRAC [15]. Again, the analytical results are very consis-
tent with both sets of experimental results.

Figure 1(c) shows the same ratio as a function of the
number of input pins per cluster, I . In all cases, K = 4 and
N = 20. The boundary between I-limited and N -limited
architectures is also shown. The graph shows that our model
tracks the experimental results well in both regions.

Finally, Figure 1(d) shows the average number of used
inputs per cluster as a function of cluster size. Although our
model tracks both sets of experimental results, it matches
the iRAC results more closely. This is expected, since iRAC
explicitly tries to minimize the use of cluster pins.

6. EXAMPLE APPLICATION OF OUR MODEL

One of the purposes of our model is to allow for early archi-
tectural evaluation. In this section, we show how the model,
along with the channel width model from [4], can be used
to estimate the number of programming bits in an FPGA as
a function of the architectural parameters K, N , and I . We
will investigate whether an analytical flow employing our
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Fig. 1. Model Validation

model leads to similar conclusions that would be obtained
by a more time-consuming experimental methodology.

We consider three flows:

1. The first flow is purely analytical. We use the model
described in Section 4, to estimate n2

nc
and i. These

quantities are then used in conjunction with the chan-
nel width model in [4] to determine the amount of
routing needed for a given architecture. We then use
equations that model the number of programming bits
in a clustered logic block, connection block, switch
block. These equations are similar to those used within
VPR 5.0, and assume an architecture with uni-directional,
single-driver wires. Multiplexers are assumed to be
implemented using a two-tiered structure with one-
hot select lines (as in VPR 5.0). Finally, these area es-
timates are used to determine the number of program-
ming bits required for each of twenty large benchmark
circuits. Note that this flow is purely analytical and
does not require experimental CAD tools.

2. The second flow is purely experimental. We map each
of the twenty benchmark circuits to 4-input LUTs us-
ing Flowmap, clusters containing four LUTs and 10

inputs using TVPack, and then place and route the cir-
cuits using VPR 5.0. We use the model within VPR
5.0 to count the number of programming bits for each
benchmark circuit.

3. As an intermediate between the first two flows, we
use the model in Section 4 to estimate n2

nc
and i, but

use VPR 5.0 to determine the actual channel width
(instead of using the model from [4]). This flow is
included to provide insight into each portion of the
analytical model.

Figure 2 shows the results for an architecture with Fs =
9, Fcin = 20, Fcout = 4, and L = 1. Figure 2(a) shows the
number of programming bits as a function of K, Figure 2(b)
shows the number of programming bits as a function of N ,
and Figure 2(c) shows the number of programming bits as a
function of I .

In all cases, the results from Flow 2 (purely experimen-
tal) and Flow 3 (analytical technology mapping and cluster-
ing but experimental routing) match closely. This is to be
expected, given the accuracy illustrated in Figure 1.

When the model from [4] is used (Flow 1), the analytical
estimates still track the experimental results, however, not as
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Fig. 2. Routing Bit Model Verification

closely. The largest differences arise for architectures with a
small number of cluster inputs. These architectures contain
far fewer inputs per cluster than the equations in [4] were
intended to model. We have found that for such “extreme”
architectures, the average wirelength is 25% larger than the
architectures considered in [4]. This is primarily because
as I decreases, the sharing of LUT inputs within a cluster
is encouraged. This tends to decrease the average fanout,
which increases the average wirelength.

This is an important observation – although the model
presented in this paper correctly models architectures with
small values of I , a complete analytical flow that accurately
models these architectures does not yet exist. Addressing
this limitation is an interesting area for future research.

7. CONCLUSION

In this paper, we have presented an analytical model that re-
lates lookup-table size, cluster size, and the number of inputs
per cluster to amount of logic that can be packed into each
lookup-table and cluster, and the number of used inputs per
cluster. Comparing the model predictions with experimental
results has shown that our model is accurate.

We have shown that the model can be used during early
architecture evaluation, in which potential architectures are
considered before custom CAD tools are created. How-
ever, the model has the potential to be much more power-
ful than that. By combining our model with that from [4],
we have a means of relating routing architecture parameters
with lookup-table and cluster size. Recent FPGAs are em-
ploying larger lookup-tables, and it seems reasonable to ex-
pect that the logic architecture of future FPGAs may change
further. Using a model such as ours provides the ability
to understand the impact that potential logic block archi-
tectures may have on the routing fabric, and more impor-
tantly, why the routing fabric is impacted in a certain way.
For FPGA architects, this could potentially be much more
useful than experimental results that evaluate a single archi-
tecture (or even a sweep of a single architectural parameter).

A C-implementation of our model can be downloaded
from http://www.ece.ubc.ca/˜stevew.
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