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the Box-Muller Method and Its Error Analysis
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Abstract— We present a hardware Gaussian noise generator
based on the Box-Muller method that provides highly accurate
noise samples. The noise generator can be used as a key
component in a hardware-based simulation system, such as for
exploring channel code behavior at very low bit error rates, as
low as 10−12 to 10−13. The main novelties of this work are
accurate analytical error analysis and bit-width optimization for
the elementary functions involved in the Box-Muller method.
Two 16-bit noise samples are generated every clock cycle, and
due to the accurate error analysis, every sample is analytically
guaranteed to be accurate to one unit in the last place. An
implementation on a Xilinx Virtex-4 XC4VLX100-12 FPGA
occupies 1452 slices, 3 block RAMs and 12 DSP slices, and
is capable of generating 750 million samples per second at a
clock speed of 375 MHz. The performance can be improved
by exploiting concurrent execution: 37 parallel instances of the
noise generator at 95 MHz on a Xilinx Virtex-II Pro XC2VP100-
7 FPGA generate seven billion samples per second, and can
run over 200 times faster than the output produced by software
running on an Intel Pentium-4 3 GHz PC. The noise generator is
currently being used at the Jet Propulsion Laboratory, NASA to
evaluate the performance of low-density parity-check codes for
deep-space communications.

Index Terms— Algorithms implemented in hardware, com-
puter arithmetic, error analysis, elementary function approxi-
mation, field programmable gate arrays, minimax approxima-
tion and algorithms, optimization, random number generation,
simulation.

I. INTRODUCTION

DUE to recent advances in field-programmable technol-
ogy, hardware-based simulations are getting increasing

attention due to their huge performance advantages over
traditional software-based methods. Naive hardware imple-
mentations can be slow and can generate misleading results.
Hence, care must be taken when mapping algorithms into
hardware. In particular, the resulting hardware design should
meet the performance targets, while making efficient use of
the available resources and properly managing errors due to,
for instance, finite precision effects.

The availability of normally distributed random samples
is essential in a large number of computationally intensive
modeling and simulation applications including channel code
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evaluation [1], molecular dynamics simulation [2] and finan-
cial modeling [3]. Our work is originally motivated by ongoing
advances in communications systems involving channel codes.
Notably, turbo codes [4] and low-density parity-check (LDPC)
codes [1] are currently the focus of intensive research in
the coding community due to their ability to approach the
Shannon bound very closely. Software-based simulations can
take several days to several weeks when the behavior at very
low bit error rates (BERs) of such codes is being examined.
Hardware-based simulations equipped with a fast and accurate
noise generator offer the potential to speed of simulation by
several orders of magnitude. Transferring software generated
noise samples to the hardware device is highly inefficient and
can be a performance bottleneck, hence it is desirable to have
the noise generator on the hardware device itself.

For simulations involving large numbers of samples, the
quality of the noise samples play a key factor. Deviations
from the ideal Gaussian probability density function (PDF) can
degrade simulation results and lead to incorrect conclusions.
Hence, we believe the presence of a rigourously designed and
characterized hardware Gaussian noise generator is crucial.
Attention needs to be paid at the samples that lie at the tails of
the Gaussian PDF, i.e. samples that lie multiples of σ (standard
deviations) away. These samples are rare in a relative sense,
but they are important because they can cause events of high
interest.

The principal contribution of this paper is a hardware
Gaussian noise generator based on the Box-Muller method
and the error analysis of its elementary functions. It generates
16-bit noise samples accurate to one unit in the last place (ulp)
up to 8.2σ, which models the true Gaussian PDF accurately
for a simulation size of over 1015 samples. Generally when
evaluating channel codes, one needs 100 to 1000 bits in error
to draw conclusions of a simulation with enough confidence.
Hence with 1015 samples, one can examine channel code
behavior for bit error rates as low as 10−12 to 10−13. The noise
generator is relatively small, while producing 750 million
samples per second at a clock speed of 375 MHz on a Xilinx
Virtex-4 XC4VLX100-12 FPGA. The highlights of this paper
include:
• a hardware architecture for the Box-Muller method;
• piecewise polynomial based function approximation units

with range reduction;
• accurate error analysis and bit-width optimization leading

to a guaranteed maximum absolute error bound of 1 ulp;
• exploration of hardware implementation of the proposed

architecture targeting both advanced high-speed FPGAs
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and low-cost FPGAs;
• the only reported Gaussian noise generator with a formal

error analysis.
The rest of this paper is organized as follows. Section II

covers background material and previous work. Section III
provides an overview of the proposed design flow and the
Box-Muller hardware architecture. Section IV describes how
we evaluate the elementary functions associated with the
Box-Muller method. Section V introduces the MiniBit bit-
width optimization approach. Section VI describes the error
analysis and bit-width optimization procedures for our Box-
Muller architecture. Section VII describes technology-specific
implementation of the hardware architecture on Xilinx FPGAs.
Section VIII discusses evaluation and results, and Section IX
offers conclusions.

II. BACKGROUND

In simulation environments, digital methods for generating
Gaussian random variables are preferred over analog methods.
Analog components allow truly random numbers, but are
highly sensitive to environmental changes such as temperature
and provide low throughputs of tens of kilo bits per second.
Such methods are often used for generating random seeds in
cryptographic applications [5]. In contrast, digital methods are
more desirable due to their robustness, flexibility and speed.
Although the resulting number sequences are pseudo random
as opposed to truly random, the period can be made sufficiently
large such that the sequences never repeat themselves even in
the largest practical simulations.

The majority of digital methods for generating Gaussian
random variables are based on transformations on uniform
random variables [6]. Popular methods include the Ziggurat
method [7], the inversion method [8], the Wallace method [9]
and the Box-Muller method [10]. Ziggurat is a class of
rejection-acceptance methods, meaning that the output rate is
not constant, making it less desirable to a hardware simulation
environment. The inversion method involves the approxima-
tion of the inverse Gaussian cumulative distribution function
(CDF), which is highly non-linear, making it less suitable
for a fixed-point hardware implementation. In contrast to all
other methods, Wallace does not require the evaluation of
elementary functions; new noise samples are generated by
applying linear transformations to the previous pool of noise
samples. Unfortunately due to the feedback nature of the
Wallace method, correlations can occur between successive
transformations. These correlations can be made insignifi-
cant for any given simulation environment through proper
parameter choice, but the need to manage them represents
an additional complication inherent in the Wallace method.
Our choice for hardware implementation is the Box-Muller
method, which transforms two uniformly distributed variables
into two normally distributed variables through a series ele-
mentary function evaluations.

Recently, there have been notable research contributions
on the hardware implementations of the methods discussed
above. Boutillon et al. [11] were the first to realize a hardware
Gaussian noise generator based on the Box-Muller algorithm

and the central limit theorem. The central limit theorem is em-
ployed to overcome approximation errors of the mathematical
functions of the Box-Muller method. Their design occupies
437 logic cells on an Altera Flex 10K1000EQC240-1 FPGA
and has a throughput of 24.5 million samples per second.
Xilinx [12] have released an IP core and Fung et al. [13]
have implemented an ASIC chip based on the Boutillon et
al.’s architecture. The former has a throughput of 245 million
samples per second on a Xilinx Virtex-II XC2V1000-6 FPGA,
whereas the latter has a throughput of 182 million samples
per second on a six metal layer 0.18µm ASIC. Unfortunately,
there are two drawbacks of this architecture: (1) it is limited
to noise samples with magnitude less than 4σ, (2) statistical
tests reveal that the quality of the noise samples are poor [14].
Unlike the two Box-Muller architectures above, the design
presented in this paper employs highly accurate elementary
function evaluation techniques, eliminating the need for the
central limit theorem altogether.

In [15], we presented an architecture also based on the
Box-Muller method and central limit theorem, but with more
sophisticated function approximation techniques, resulting in
significantly higher quality noise samples. The key differences
between our previous work [15] and the work presented here
are: (1) the way the mathematical functions are evaluated, (2)
the accuracy of the noise samples, (3) the noise quality in the
tails, as expressed by the maximum attainable σ multiple, and
(4) the hardware efficiency, as illustrated in Table II. In [15] we
evaluated the non-linear functions of the Box-Muller method
using degree one piecewise polynomials with non-uniform
segmentation. The approximation and quantization errors were
found to be high, forcing us to use the central limit theorem to
improve noise quality. This resulted in an output rate of one
sample per clock cycle. In addition, the maximum attainable
σ multiple was 6.7. By contrast, in this work we evaluate the
elementary functions one by one and rigourously analyze the
errors involved, and in doing so are able to obtain a maximum
σ multiple of 8.2. This added performance is critical for many
large communications simulations. The central limit theorem
is not required, resulting in an output rate of two samples
per clock. Both samples are guaranteed to be accurate to 1
ulp, while using minimal bit-widths for the various signals in
the data paths. In terms of hardware efficiency on an FPGA,
this work achieves more than five times the throughput and
occupies 40% less logic than [15].

In [14] and [16] we also describe hardware architectures of
the Wallace and the Ziggurat methods. We provide detailed
comparisons between different architectures in Section VIII.

We choose a Xilinx Virtex-4 XC4VLX100-12 FPGA to re-
alize our noise generator hardware architecture. Xilinx Virtex-
4 FPGAs have the following three main types of resources:
(1) user configurable elements known as “slices”, (2) storage
elements known as “block RAMs”, and (3) multiply-and-add
units known as “DSP slices”. A single slice is composed
of 2.25 logic cells, which is the fundamental building block
of Xilinx FPGAs. A logic cell comprises a 4-input lookup
table, which can also act as a 16 × 1 RAM or a 16-bit
shift register, a multiplexor and a register. A slice contains
additional resources such as multiplexors and carry logic, and
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Fig. 1. Design flow of our Box-Muller implementation.

therefore a slice is counted as being equivalent of 2.25 logic
cells. Each block RAM can store 18Kb of data and a DSP
slice can perform 18-bit by 18-bit multiplication followed by
48-bit addition. The Xilinx Virtex-4 XC4VLX100-12 device
contains 49152 slices, 240 block RAMs and 96 DSP slices.

III. DESIGN FLOW AND ARCHITECTURE

This section provides an overview of our design methodol-
ogy and introduces the operations involved in the Box-Muller
method. We also discuss the specifications given for our noise
generator and their implications with the Box-Muller method.

A. Design Flow
The design flow of our Box-Muller implementation is

illustrated in Fig. 1. We first start by devising the specifications
for the noise generator, which includes the periodicity of the
samples, noise precision requirements and throughput require-
ments. Although software implementations often use floating-
point arithmetic, fixed-point arithmetic is often preferred for
hardware implementations due to its area efficiency.

In order to meet the accuracy requirements of the noise sam-
ples, careful error analysis needs to be performed on the fixed-
point data paths to determine the minimal bit-widths required.
We generate the polynomial coefficient tables using MATLAB
and the MATLAB Symbolic Toolbox, which actually contains
the kernel of the MAPLE linear algebra package. After the bit-
widths have been determined and the polynomial coefficient
tables have been generated, we implement MATLAB and C
models of the noise generator. These software models are
programmed to be bit-accurate to the actual hardware realiza-
tion, by emulating the quantization effects of the arithmetic
operations.

Through comparisons with IEEE double-precision floating
point arithmetic, tests are conducted to check if the accuracy
requirements of the noise samples are met. After the software
implementations are finalized, we implement the hardware de-
sign using Xilinx System Generator [17], which is a MATLAB
Simulink library and can generate Verilog or VHDL. The
hardware design is verified carefully to ensure that it behaves
the same way as the software models.
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Fig. 2. Overview of our Gaussian noise generator architecture based on the
Box-Muller method.

B. Architecture for the Box-Muller Method

The Box-Muller method starts with two independent uni-
form random variables u0 and u1 over the interval [0, 1). The
following mathematical operations are performed to generate
two samples x0 and x1 of a Gaussian distribution N(0, 1).

e = −2 ln(u0) (1)
f =

√
e (2)

g0 = sin(2π u1) (3)
g1 = cos(2π u1) (4)
x0 = f × g0 (5)
x1 = f × g1 (6)

The above equations lead to an architecture depicted in
Fig. 2. Although traditional linear feedback shift registers (LF-
SRs) are often sufficient as a uniform random number genera-
tor (URNG), Tausworthe URNGs [18] are fast and occupy less
area. Furthermore, they provide superior randomness when
evaluated using the Diehard random number test suite [19]
as demonstrated in [16]. Our Tausworthe URNG follows the
algorithm presented by L’Ecuyer [20], which combines three
LFSR-based URNGs to obtain improved statistical properties.
It generates a 32-bit uniform random number per clock and
has a large period of 288(≈ 1025). Its implementation in C
code is illustrated in Figure 3.

The implementation of the three function evaluation units:
logarithm, square root and the Sine and Cosine (sin/cos) unit,
will all be analyzed in Section IV and Section VI. The two
numbers shown in brackets for each signal in Fig. 2 indicate
the total bit-width and the fraction bit-width of the signal.
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unsigned long s0, s1, s2, b;

unsigned long taus()
{

b = (((s0 << 13) ˆ s0) >> 19);
s0 = (((s0 & 0xFFFFFFFE) << 12) ˆ b);
b = (((s1 << 2) ˆ s1) >> 25);
s1 = (((s1 & 0xFFFFFFF8) << 4) ˆ b);
b = (((s2 << 3) ˆ s2) >> 11);
s2 = (((s2 & 0xFFFFFFF0) << 17) ˆ b);
return s0 ˆ s1 ˆ s2;

}

Fig. 3. Description of the Tausworthe URNG in C code.

The derivation of these bit-widths will be discussed in detail
in Section VI.

C. Specifications

Two key specifications are set for our noise generator:
periodicity of 1015 and 16-bit noise samples. In order to meet
the periodicity requirement, the URNGs should have a period
of at least 1015. But at the same time, the noise samples should
follow the ideal Gaussian distribution as closely as possible
over the period. By examining the normal distribution N(0, 1)
using MAPLE, we observe that we need to be able to represent
up to 8.1σ for a population of 1015 samples. In other words,
the probability of the absolute value of a single sample from
that population being larger than 8.1σ is less than 0.5 (0.444
to be exact). By examining Eqn. (1) ∼ (6), the maximum σ
value is determined by the smallest value of f , which in turn
is determined by the smallest value of u0, i.e.

8.1 ≥
√
−2 ln(u0) ⇒ u0 ≤ 5.66× 10−15. (7)

We use 48 bits for u0, which gives a minimum value of u0 =
2−48 = 3.55 × 10−15 meeting the requirement in Eqn. (7).
This also means that the maximum σ value we can attain is
8.2. There is no logical way to determine the number of bits
required for u1, except that it should have a good resolution.
We use 16 bits for u1, which is the same bit-with as the noise
samples. Hence conveniently, two 32-bit Tausworthe URNGs
are utilized to provide the 48 bits and 16 bits required for u0

and u1.
We use two’s complement fixed-point representation for the

noise samples. The maximum absolute value of 8.2 means that
5 bits are sufficient for the integer bit-width (IB), leaving us
with 11 bits for the fraction bit-width (FB). We would like to
represent the noise samples as accurately as possible within
the given 16 bits. Our criterion for evaluating the accuracy is
ulp. The ulp of a fixed-point number with 11 bits fraction is
2−11. There are two main types of rounding commonly used
in computer arithmetic: faithful rounding and exact rounding.
Faithful rounding means that results are accurate to 1 ulp
(rounded to the nearest or next nearest) and exact rounding
means that results are accurate to 1/2 ulp (rounded to the
nearest). Exact rounding is difficult to achieve due to a
problem known as the table maker’s dilemma [21] and has
a rather large area penalty [22], hence we opt for faithful
rounding in this work. Therefore, for every noise sample, the
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Fig. 4. Only the thick line is approximated for the evaluation of sin/cos.
The most significant two bits of x are used to index one of the four quadrant
and the remaining bits select a location within the quadrant.

maximum absolute error compared against infinite precision
should be less than or equal to 2−11. For the purposes of this
analysis, we regard IEEE double-precision floating-point to be
“infinitely precise” since it is many orders of magnitude more
accurate than the precision we are aiming for.

IV. FUNCTION EVALUATION

Throughout this paper, we shall denote the bit-width of a
signal x as Bx, the integer bit-width as IBx, the fraction bit-
width as FBx, and its associated error as Ex.

Consider an elementary function f(x), where x and f(x)
have a given range [a, b] and precision requirement. The
evaluation f(x) typically consists of three steps [23]:

(1) range reduction: reducing x over the interval [a, b] to a
more convenient y over a smaller interval [a′, b′],

(2) function approximation on the reduced interval, and
(3) range reconstruction: expansion of the result back to the

original result range.
Our function evaluation steps for −2 ln(u0),

√
e, sin(2πu1)

and cos(2πu1) are based on the methods presented in [22]
and [24]. If a variable x is separated into a sign bit Sx, a
mantissa Mx where Mx = [1, 2) and an exponent Ex, i.e
x = (−1)Sx×Mx×2Ex , the following mathematical identities
are used for the evaluation of the logarithm and the square root
when Sx = 0

ln(Mx × 2Ex ) = ln(Mx) + Ex × ln(2) (8)
p

Mx × 2Ex =

 √
Mx × 2Ex/2, Ex mod 2 = 0√

2×Mx × 2(Ex−1)/2, Ex mod 2 = 1
(9)

We observe from the equations above that the range reduction
steps of the logarithm and the square root are essentially
fixed-point to floating-point conversions. For the evaluation
of sin/cos, we exploit the symmetric and periodic behavior of
the two functions. As illustrated in Fig. 4, only cos(x) over
x = [0, π/2) needs to be approximated.

To approximate the functions over the linear range, we use
piecewise polynomials with uniform segments. Polynomials
are evaluated using Horner’s rule:

y = ((Cdx + Cd−1)x + . . .)x + C0 (10)

where x is the input, d is the polynomial degree and C
are the polynomial coefficients. The hardware architecture for
a degree two piecewise polynomial is shown in Fig. 5. A
degree one architecture would be similar but without the first
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Fig. 5. Hardware architecture for degree two piecewise polynomials.

multiply-and-add unit. The input interval is split into 2BxA

equally sized segments. The BxA
leftmost bits of the argument

x serve as the index into the table, which holds the polynomial
coefficients for that particular interval. Since xA is implicitly
known for a given interval, we use xB instead of x for the
polynomial arithmetic to reduce the size of the operators. We
scale xB to be over [0, 1) to simplify the error analysis phase
in Section VI. If x = [0, 1), this would involve masking out
the bits corresponding to xA and shifting x by BxA

bits to the
left.

The polynomial coefficients are found in a minimax sense
that minimize the maximum absolute error [23] using MAPLE.
However, the coefficients are generated with the assumption
that x will be used for the polynomial arithmetic. If we want
to use xB instead, the coefficients need to be transformed. We
consider a degree one polynomial to illustrate the transforma-
tion process, but the same principle can be applied to other
degrees. For a given segment, we obtain xB by

xB = (x− xA)× 2BxA . (11)

Rearranging the equation we obtain

x =
xB

2BxA

+ xA. (12)

A degree one polynomial is represented by the equation

y = C1x + C0. (13)

and by substituting Eqn. (12) into Eqn. (13) we get

y =
C1

2BxA

xB + C1xA + C0. (14)

By examining the first and zeroth order terms, the new
transformed polynomial coefficients C̄1 and C̄0 are now C1

2BxA

and C1xA + C0, respectively.
With the proposed architecture in Fig. 5, we need d + 1

table lookups, d multiplications and d additions. The size of

the lookup table is given by

table size = 2BxA ×
d∑

i=0

BCi bits. (15)

The main challenge is to find the minimal bit-widths for each
signal, while meeting the output error constraints. We discuss
how we achieve this in the next two sections.

V. THE MINIBIT BIT-WIDTH OPTIMIZATION APPROACH

In this section, we briefly describe the fundamental princi-
ples behind the MiniBit bit-width optimization approach [25],
a technique for optimizing fixed-point signals using analytical
error expressions with a guaranteed maximum error bound.

In digital systems, signals need to be quantized to finite
precisions. In order to minimize area and meet the accuracy re-
quirement, each signal should use the minimal bit-width, while
the final output signals should obey the accuracy requirements.
There are two main ways to quantize a signal: truncation and
round-to-nearest. Truncation and round-to-nearest can cause
a maximum error of 2−FB (1 ulp) and 2−FB−1 (1/2 ulp),
respectively. Truncation chops bits off the least significant
parts and requires no extra hardware resources. Although
round-to-nearest requires a small adder, we opt for round-to-
nearest, since it allows for smaller bit-widths than truncation.

Let ã be the quantized version and Eã be the error of the
signal a. Thus,

ã = a + Eã. (16)

For addition/subtraction operations y = a± b, the error Eỹ at
the output y is given by

ỹ = ã± b̃ = a± b + Eã + Eb̃ + 2−FBỹ−1

⇒ Eỹ = Eã + Eb̃ + 2−FBỹ−1 (17)

where 2−FBỹ−1 is the rounding error of ỹ. For multiplication,
we get

ỹ = ãb̃
= ab + aEb̃ + bEã + EãEb̃ + 2−FBỹ−1

⇒ Eỹ = aEb̃ + bEã + EãEb̃ + 2−FBỹ−1.
(18)

Eỹ would be at its maximum when a and b are at their
maximum absolute values.

Consider a slightly more complex example: y = a× b + c.
We want to quantize signals after each operation, hence we
compute the example in two steps:

t = a× b (19)
y = t + c. (20)

The error Eỹ is given by

Et̃ = aEb̃ + bEã + EãEb̃ + 2−FBt̃−1

⇒ Eỹ = Et̃ + Ec̃ + 2−FBỹ−1.
(21)

For faithful rounding, the maximum output error max(Eỹ)
needs to be less than or equal to 1 ulp, i.e.

2−FBỹ ≥ max(Eỹ). (22)

Suppose we want ỹ’s fraction to be accurate to 16 bits, with
a, b and c are constants rounded to the nearest. Assume that the
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maximum absolute values are max(|a|) = 2, max(|b|) = 4.
Note that max(|c|) is irrelevant to this error analysis. Then
using Eqn. (21) and Eqn. (22) we get

2−16 ≥ 2× 2−FBb̃−1 + 4× 2−FBã−1

+2−FBã−FBb̃−2 + 2−FBt̃−1 + 2−FBc̃−1

+2−17

≥ 22−FBã + 21−FBb̃ + 2−FBã−FBb̃−1

+2−FBc̃ + 2−FBt̃ . (23)

The error terms are functions of the fraction bit-widths of
the signals and the maximum value of the signals, hence the
optimization problem is to find the minimal fraction bit-widths
for the signals ã, b̃, c̃ and t̃ while satisfying the inequality. For
small problems like this, enumeration may be appropriate, but
for complex equations involving a large number of signals,
methods such as simulated annealing can be used [25]. Several
sets of optimal solutions exist, which depend on the cost
functions of the operations. One solution to this example
would be FBã = 21, FBb̃ = 19, FBc̃ = 18 and FBt̃ = 18.
Since the remainder of the discussion that follows concerns
quantized signals, we shall omit the tilde (∼) over the signal
notation for readability.

Regarding the optimization of the integer bit-widths (IBs),
in straightforward cases it can be often performed manually by
analytical analysis of the dynamic ranges of the signals. For
less intuitive cases, one can rely on range analysis techniques
such as affine arithmetic [26] as demonstrated in [25].

VI. ERROR ANALYSIS AND BIT-WIDTH OPTIMIZATION
FOR NOISE GENERATOR

In this section, we describe how the MiniBit error expres-
sions are used to optimize the bit-widths of the signals in our
Box-Muller architecture using a bottom-up approach. We shall
discuss the fraction bit-width (FB) optimization problem only,
which we have found to be significantly more challenging
than integer bit-width (IB) optimization. In order to find the
optimal IBs, we analyze the signals carefully and examine
their dynamic ranges. This manual optimization process is
found to be feasible for the noise generator since the dynamic
ranges of the signals are straightforward and predictable. We
make the assumption that all function evaluations are faithfully
rounded throughout. The evaluation steps for the Box-Muller
architecture are described in the pseudo-code in Fig. 6.

A. Error Analysis at the Output

The accuracy requirement of the noise samples x0 and
x1 is faithful rounding, i.e. they should be accurate to 1
ulp. Knowing that the samples have 11 fractional bits, the
requirements are

Ex0 ≤ 2−11 and Ex1 ≤ 2−11. (24)

We shall consider the data path to x0 only, since the error
analysis is identical for x1. Assuming we faithfully round f
and g0, we get the following error expression

2−11 ≥ g0 × 2−FBf + f × 2−FBg0 . (25)

01: --------------- Generate u0 and u1 ---------------
02: a = taus(); b = taus();
03: u0 = concat(a,b[31:16]);
04: u1 = b[15:0];
05:
06: ------------- Evaluate e = -2ln(u0) --------------
07:
08: # Range Reduction
09: exp_e = LeadingZeroDetector(u0)+1;
10: x_e = u0 << exp_e;
11:
12: # Approximate -ln(x_e) where x_e = [1,2)
13: # Degree-2 piecewise polynomial
14: y_e = ((C2_e[x_e_B]*x_e)+C1_e[x_e_B])*x_e_B
15: +C0_e[x_e_B];
16:
17: # Range Reconstruction
18: ln2 = ln(2);
19: e’ = exp_e*ln2;
20: e = (e’-y_e)<<1;
21:
22: -------------- Evaluate f = sqrt(e) --------------
23:
24: # Range Reduction
25: exp_f = 5-LeadingZeroDetector(e);
26: x_f’ = e >> exp_f;
27: x_f = if(exp_f[0], x_f’>>1, x_f’);
28:
29: # Approximate sqrt(x_f) where x_f = [1,4)
30: # Degree-1 piecewise polynomial
31: y_f = C1_f[x_f_B]*x_f_B+C0_f[x_f_B];
32:
33: # Range Reconstruction
34: exp_f’ = if(exp_f[0], exp_f+1>>1, exp>>1);
35: f = y_f << exp_f’;
36:
37: ------------ Evaluate g0=sin(2*pi*u1) ------------
38: ------------ g1=cos(2*pi*u1) ------------
39:
40: # Range Reduction
41: quad = u1[15:14];
42: x_g_a = u1[13:0];
43: x_g_b = (1-2ˆ-14)-u1[13:0];
44:
45: # Approximate cos(x_g_a*pi/2) and cos(x_g_b*pi/2)
46: # where x_g_a, x_g_b = [0,1-2ˆ-14]
47: # Degree-1 piecewise polynomial
48: y_g_a = C1_g[x_g_a_B]*x_g_a_B+C0_g[x_g_a_B];
49: y_g_b = C1_g[x_g_b_B]*x_g_b_B+C0_g[x_g_b_B];
50:
51: # Range Reconstruction
52: switch(seg)
53: case 0: g0 = y_g_b; g1 = y_g_a;
54: case 1: g0 = y_g_a; g1 = -y_g_b;
55: case 2: g0 = -y_g_b; g1 = -y_b_a;
56: case 3: g0 = -y_g_a; g1 = y_g_b;
57:
58: ---------------- Compute x0 and x1 ---------------
59: x0 = f*g0; x1 = f*g1;

Fig. 6. Pseudo-code of the evaluation steps for the Box-Muller architecture.

We are interested in the worst case error, which occurs when
g0 and f are at their maximum of 1 and 8.157. Hence, we get

2−11 ≥ 2−FBf + 8.157× 2−FBg0 . (26)

Given that f has a deeper computation chain than g0, we would
prefer that its computation requirements be less precise so
that less bits are needed for its implementation. Through an
exhaustive search, we find that FBf = 13 and FBg0 = 15 are
the minimal bit-widths that meet the inequality in Eqn. (26).

Now that we have determined the bit-widths for f and g0,
we can move on to the square root unit and the sin/cos unit.
We shall first perform analysis for the sin/cos unit, since it is
easier to analyze due to the shorter computation chain.
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B. Error Analysis for the Sin/Cos Unit

The sin/cos unit corresponds to lines 37-56 in Fig. 6. The
range reduction and range reconstruction steps of the sin/cos
unit are exact, i.e. there are no quantization steps involved.
Hence, we only need to worry about the approximation steps.
Because of the periodic and symmetric nature of sin(x) and
cos(x) as shown in Fig. 4, we only approximate cos(x) over
[0, π/2). From the 16-bit input u1, the most significant two
bits are used to select a random quadrant from one of the four
quadrants of sin(x) and cos(x) and the remaining 14 bits are
used for the polynomial approximation. Two variables xg a

and xg b are obtained from the 14 bits, which are used to
compute g0 and g1.

The approximations required are cos(xg aπ/2) and
cos(xg bπ/2). Since the two approximations share the same
data path characteristics, we shall discuss cos(xg aπ/2) only.
In the following analysis, xg a will be referred to as xg for
simplicity. We first need to decide what degree polynomial
to use for the approximation: a low degree polynomial will
require less computations at the expense of a larger table. In
addition, shallower computation chains will accumulate less
quantization errors. Hence, we would like to use the lowest
degree possible as long as the table size is reasonable. This
will of course depend on the function and the precision we
are aiming for.

In Section VI-A, we derived that FBg0 = 15. Knowing that
the range reconstruction step only involves sign changes, we
also need FByg = 15. The signal yg needs to be faithfully
rounded to 15 bits fraction, i.e. Eyg ≤ 2−15. When approx-
imating a function with piecewise polynomials, we would
like to know the minimal number of segments required for a
given input range, polynomial degree and output accuracy. A
MATLAB program is written which uses MAPLE to compute
the minimax polynomial coefficients and maximum approxi-
mation error for a given segment. It incrementally increases
the number of segments by a power of two until all segments
meet the user-specified output accuracy.

When approximating yg = cos(xgπ/2) with an accuracy
of 2−15, our MATLAB program reports that we need 128
segments for a degree one polynomial and 16 segments for a
degree two polynomial. As a rough estimate of the coefficient
table size, we assume that the coefficients have the same
bit-width as the output yg, i.e. 16 bits. From Eqn. (15), we
can infer that table sizes will be roughly 4096 and 768 bits
for degree one and two polynomials, respectively. Given that
a block RAM on Virtex-II and Virtex-4 FPGAs are 18Kb,
enough to fit the 4096 bits for degree one polynomials, we opt
for a degree one polynomial. Based on the above information
and our experience with piecewise polynomials, a good rule of
thumb is to use degree one polynomials for target precisions
lower than 20 bits and degree two polynomials for above 20
bits.

Fig. 7 shows the data path for a degree one polynomial
approximation to cos(xgπ/2). It corresponds to line 48 and
line 49 in Fig. 6. Knowing that Eyg ≤ 2−15 and using the
MiniBit techniques from Section V, we get the following error
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Fig. 7. Degree one polynomial approximation circuit for yg = cos(xgπ/2).

expression

2−15 ≥ ED0g
+ EC0g

+ 2−16 + Eapproxg
. (27)

Note that the 2−16 term is the rounding error of yg. Because
the function is approximated by a polynomial, there is an
inherent approximation error Eapproxg

regardless of quantiza-
tion effects. For this approximation, the maximum polynomial
approximation error is reported to be 9.26458 × 10−6 by
MAPLE.

The polynomial coefficients are rounded to the nearest,
hence

2−16 ≥ ED0g + 2−FBC0g−1 + 9.26458× 10−6. (28)

The error at D0g is expressed as

ED0g = xg B × EC1g + C1g × Exg B
+ 2−FBD0g−1. (29)

The maximum value of xg B is one and since xg B has no
errors, we get

ED0g = 2−FBC1g−1 + 2−FBD0g−1 (30)

and by substituting Eqn. (30) into Eqn. (28) we obtain

5.99421× 10−6 ≥ 2−FBC1g−1 + 2−FBC0g−1

+2−FBD0g−1. (31)

We find that FBC1g = 18, FBC0g = 18 and FBD0g =
18 are the minimal bit-widths that satisfy the inequality. In
the actual ROM, we store the two coefficients C1g and C0g

as integers. The coefficients for C1g all contain six leading
zeros in the fraction part, and some values of C0g turn out to
be slightly larger than one. Moreover, all values of C1g and
C0g are found to have the same sign. Hence, the bit-width
required for C1g is 12 bits (with the six redundant leading
six bits eliminated) and C0g is 19 bits (with one extra bit to
cover the integer part). As mentioned earlier, 128 segments
are required for a degree one approximation to cos(xgπ/2)
and hence the total table size needed for the sin/cos unit is
(12 + 19)× 128 = 3968 bits.

C. Error Analysis for the Square Root Unit

The square root unit corresponds to line 22 to line 35
in Fig. 6 and is derived from Eqn. (9). It is perhaps the
most challenging error analysis step, since it suffers from
propagation errors at its input produced by the logarithm unit.
We shall discuss why the propagation errors make the error
analysis difficult and how we overcome this problem.
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Since u0 is over [0, 1−2−48], we know that the output of the
logarithm unit e = −2 ln(u0) will be over [0, 66.54]. u = 0
is treated as a special case, in which we simply set e = 0.
Since e is unsigned, the number of its integer bits will be
seven. The leading zero detector (LZD) returns the number of
leading zeros from the most significant bit. Since e has seven
integer bits and we want x′f to be over [2, 4) (i.e. x′f has two
integer bits), we subtract the output of the LZD from five in
order to obtain the number of bits to shift e.

The minimum value of expf occurs when e has just a one
in its least significant bit. Hence,

min(expf ) = −(FBe + 1). (32)

Looking at line 34 in the range reconstruction step, we have
the following relationship between expf and exp′f .

exp′f =
{

expf/2, expf [0] = 0
(expf + 1), expf [0] = 1 (33)

The maximum value of expf is five (i.e. when there are no
leading zeros in e), hence the maximum value of exp′f will
be

max(exp′f ) =
{

2, expf [0] = 0
3, expf [0] = 1 (34)

where expf [0] denotes the least significant bit of expf . This
shows how much the result at yf can be shifted to the left,
which would amplify its error.

By examining line 35 of the range reconstruction step, we
get the following error relationship between f and yf

Ef = Eyf
× 2exp′f (35)

and from Section VI-A, we know that f should be faithfully
rounded to 13 fraction bits. Hence, we get the following
inequality

Eyf
≤ 2−13−exp′f . (36)

From the expression above, we can see that the accuracy
requirement of yf will depend on the value of exp′f . Based on
Eqn. (34) we know that max(exp′f ) = 3, therefore yf should
be at least accurate to 2−16.

We shall make the assumption that e is faithfully rounded,
i.e. max(Ee) = 2−FBe . Looking at line 26 of the range
reduction step, we get the following error relationship between
e and x′f

E′
xf

= Ee × 2−expf = 2−(FBe+expf ) (37)

and therefore

Exf
=

{
2−(FBe+expf ), expf [0] = 0

2−(FBe+expf−1), expf [0] = 1
(38)

As discussed in Section IV, Exf B
is a masked and left-

shifted version of Exf
by Bxf A

. The left-shifting by Bxf A

will amplify the error by 2Bxf A . Hence we get the following
error expression at xf B

Exf B
=

{
2−(FBe+expf−Bxf A

), expf [0] = 0
2−(FBe+expf−1−Bxf A

), expf [0] = 1
(39)

Based on the derivations above, we can now consider the
polynomial approximation part. Since the accuracy require-
ment of yf is 16 bits at least, we opt for a degree one
polynomial. For both cases when expf [0] = 0 and expf [0] =
1, which correspond to the intervals [2, 4) and [1, 2), 64
segments are required, meaning that Bxf A

= 6. Although
we use two independent coefficient tables for the two cases,
a single multiply-and-add unit for the degree one polynomial
arithmetic can be shared between them.

Using a similar analysis to the sin/cos approximation unit
with the exception that the input xfB

contains a propagated
error ExfB

, and noting that max(xf B) = 1 we get the
following error expression at the output yf

Eyf
= C1fExf B

+ 2−FBC1f
−1 + 2−FBC1f

−1Exf B

+2−FBC1f
−1 + 2−FBC0f

−1 + 2−FBD0f
−1

+2−17 + Eapproxf
(40)

Note that 2−17 is the rounding error at yf . Recalling that
min(expf ) = −(FBe + 1) and Bxf A

= 6, the product
C1fExf B

is most likely to be the dominating error factor.
Substituting Eqn. (36) and Eqn. (39) into Eqn. (40) and
considering only the dominating error factor, we get

2−13−expf /2 ≥ 2−(FBe+expf−6)C1f , expf [0] = 0 (41)

2−13−(expf +1)/2 ≥ 2−(FBe+expf−7)C1f , expf [0] = 1 (42)

Let us consider the case when expf [0] = 0 first, i.e. when
FBe is odd. It is found that max(C1f ) = 0.01101 when
expf [0] = 0. Eyf

will be at its maximum when expf is at its
minimum of −(FBe + 1). Using Eqn. (41) we get

2(FBe+1)/2−13 ≥ 2−(FBe−(FBe+1)−6) × 0.01101 (43)
⇒ FBe ≥ 25.98887 (44)
⇒ FBe = 27. (45)

For the case when expf [0] = 1, i.e. when FBe is even, we
find that max(C1f ) = 0.00778. Hence

2FBe/2−13 ≥ 2−(FBe−FBe−6) × 0.00778 (46)
⇒ FBe ≥ 23.98881 (47)
⇒ FBe = 24. (48)

Based on the two derivations above, we choose the case when
FBe is even, which is 24 bits.

Now that we have derived FBe, we need to compute the
minimal bit-widths of the signals C1f , C0f and D0f in the
polynomial arithmetic. Eapproxf

is reported to be 5.32722 ×
10−6 and 3.76332 × 10−6 for the cases when expf [0] = 0
and expf [0] = 1, respectively. Since the error requirement
at yf can vary depending on the value of expf , we shall
consider the two extreme cases when expf is at its minimum
and maximum. At min(expf ) = −25 we get

2−1 ≥ 26 × 0.00778 + 2−FBC1f
−1

+2−FBC1f
−126 + 2−FBC1f

−1

+2−FBC0f
−1 + 2−FBD0f

−1

+2−17 + 3.76332× 10−6

⇒ 4.15247× 10−6 ≥ 65× 2−FBC1f + 2−FBC0f

+2−FBD0f (49)
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and at max(expf ) = 5 we get

7.73123× 10−6 ≥ (1 + 2−25)× 2−FBC1f + 2−FBC0f

+2−FBD0f . (50)

Given that FBC1f
is likely to be around 16 bits or larger,

Eqn. (50) places more stringent bit-width requirements on the
signals than Eqn. (49). Through enumeration on Eqn. (50), we
find that FBC1f

= 18, FBC0f
= 19 and FBD0f

= 19 are the
minimal bit-widths. As in the sin/cos units, some coefficients
have leading zeros and some are larger than one. Hence when
we store the coefficients as integers, we need 12 bits and 20
bits for C1f and C0f , respectively. We need to store two
tables for the square root unit: one each for the intervals [2,4)
and [1,2). Recalling that 64 entries are required for each table,
the total table size is (12 + 20)× 64× 2 = 4096 bits.

D. Error Analysis for the Logarithm Unit

The logarithm unit corresponds to line 6 to line 20 of Fig. 6.
Examining the range reconstruction steps in line 18 to line 20,
we find that there are the two intermediate signals: ln2 (which
stores the constant ln(2)) and e′. We first need to determine the
fraction bit-widths of these two signals and the output of the
polynomial arithmetic ye. Noting that max(expe) = Bu0 = 48
and constant ln2 is rounded to the nearest, the following error
relationship exists between the signals

Ee′ = 48× 2−FBln2−1 + 2−FBe′−1

Ee = 2(Ee′ + Eye) + 2−FBe−1

= 2(48× 2−FBln2−1 + 2−FBe′−1 + Eye)
+2−FBe−1. (51)

In Section VI-C, we derived the fraction bit-width of e to be
24 bits. Assuming ye is faithfully rounded, using Eqn. (51)
we get

2−26 ≥ 48× 2−FBln2−1 + 2−FBe′ + 2−FBye . (52)

Through enumeration, the minimal fraction bit-width are
FBln2 = 32, FBe′ = 28 and FBye = 27.

Since ye needs to be accurate to 27 bits, degree one polyno-
mials will likely require a large number of segments. Hence,
we choose degree two polynomials for this approximation.
The error analysis for the degree two polynomial arithmetic
is performed in the same manner as the sin/cos unit case,
where the input to the polynomial arithmetic contains no
errors. After analysis, the minimal bit-widths for the three
polynomial coefficients C2e, C1e, C0e are found to be 13,
22 and 30 bits, respectively. The approximation requires 256
segments, hence the total table size for the logarithm unit is
(13 + 22 + 30)× 256 = 16640 bits.

VII. IMPLEMENTATION

This section discusses how our Box-Muller hardware archi-
tecture is mapped into FPGA technology.

As can be seen in Fig. 3 the operations involved in the Taus-
worthe URNG are rather straightforward, and a series of XOR
and constant shifts are needed. We also need multiplexors to
reload the original seeds when the reset signal in Fig. 2 is set
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Fig. 9. An 8-bit logical left barrel shifter: a is the input data, s is the number
of bits to shift and b is the shifted data.

high. The two Tausworthe URNGs occupy just 150 slices and
is fast enough not to require any pipeline stages.

To implement the leading zero detectors (LZDs) of the log-
arithm and the square root units, we choose the methodology
proposed by Oklobdzija [27]. It allows us to implement any
size LZDs using a 2-bit LZD as a basic building block in a
hierarchical and modular manner. Fig. 8 shows a 2-bit and a
4-bit LZD. This LZD architecture occupies little area on the
device, for instance, the 48-bit LZD used in the logarithm unit
occupies just 46 slices. The LZD is fast and hence it is used
combinatorially.

Another important component of our design is the barrel
shifter, which is required at the range reduction step of the
logarithm unit, and at the range reduction and reconstruction
steps of the square root unit. We employ the logical barrel
shifter described in Pillmeier et al.’s survey paper [28]. An
example of an 8-bit logical left barrel shifter is shown in
Fig. 9. As an example, the 48-bit left barrel shifter used in
the logarithm unit, occupies 130 slices and has two pipeline
stages.

In Section VI we determined the table sizes of the three
function evaluation units to be 3968, 4096, and 16640 bits for
sin/cos, square root and logarithm, respectively, resulting in
a total memory requirement of 24704 bits. A Virtex-4 block
RAM is reported to be 18Kb, but 18Kb can only be utilized
for certain memory width and depth combinations. Due to this
constraint, we are unable to fit the logarithm table into a single
block RAM. We adopt a three block RAM structure to store
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Fig. 10. Structures of the three block RAMs used.

the tables as illustrated in Fig. 10. In block RAM 0, the C2e

and C1e coefficients of the logarithm unit are stored. They are
concatenated to form a single long word. In block RAM 1, the
upper 256 locations store the C0e coefficients of the logarithm
unit and the lower 128 locations store the two square root
unit tables. This RAM is dual-ported since the logarithm and
square root unit need to access their coefficients every cycle.
Block RAM 2 stores the coefficients for the sin/cos unit. It
is dual-ported to allow simultaneous reads for sin and cos
evaluations.

Our Box-Muller architecture is mapped into FPGA imple-
mentations using Xilinx System Generator 7.1. The implemen-
tations are heavily pipelined to maximize the throughput/area
ratio. Synplicity Synplify Pro 8.1 is used for synthesis and
Xilinx ISE 7.1.03i is used for place-and-route with maxi-
mum effort level. An implementation on a Xilinx Virtex-4
XC4VLX100-12 FPGA occupies 1452 slices, 3 block RAMs
and 12 DSP slices. It is capable of a maximum clock speed of
375 MHz, one of the rounding circuitry in the logarithm unit
being the critical path. Since we can generate two samples per
clock, a throughput of 750 million noise samples per second
is attainable. There are 53 pipeline stages, hence valid noise
samples will appear 53 clock cycles after the reset signal is set
from high to low. In addition, we have used the noise generator
for channel code simulations on an FPGA platform, where the
hardware utilization, quality and performance were confirmed.

Higher throughputs can be obtained by exploiting paral-
lelism. We are able to fit 37 instances of the noise generator
on a Xilinx Virtex-II Pro XC2VP100-7 device, which in fact
has more area resources than the largest Virtex-4 device. They
occupy 45077 slices, 84 block RAMs and 336 MUX18X18s
(embedded multipliers). Due to routing congestion on the chip,
we are only able to achieve a clock speed of 95 MHz. Despite
the significantly lower clock speed, with the parallelism of
the multiple instances, we are able to achieve a throughput of
seven billion noise samples per second.

Others
243 slices

2 DSP slices

Logarithm Unit
703 slices

1 block RAM
6 DSP slices

Square Root Unit
334 slices

2 DSP slices

1 block
RAM

Sin/Cos Unit
172 slices

1 block RAM
2 DSP slices

Fig. 11. Hardware area comparisons of the various units in our Box-Muller
architecture.
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Fig. 12. Error plot for ten thousand randomly generated samples from
our noise generator compared against IEEE double-precision floating-point
arithmetic. The noise samples have 11 fraction bits, hence the ulp is 2−11.
Over 95% of the samples are exactly rounded.

VIII. EVALUATION AND RESULTS

This section describes how we verify the accuracy of our
noise samples, and compare the performance of our design
against other hardware and software implementations.

In order to test the accuracy of the noise samples, we com-
pare ten billion noise samples from our noise generator against
the ones generated from IEEE double-precision floating-point
arithmetic. As anticipated, the ulp error of all samples are
found to be less than 1 ulp for all samples. To verify the ac-
curacy of the samples in the high σ regions, we test ten billion
noise samples over the range of sigma multiples [−7,−4] and
[4, 7], and again all samples are found to be accurate to 1 ulp.
Throughout the tests, 95% of the samples are observed to be
accurate to 1/2 ulp (i.e. exactly rounded), demonstrating the
sheer quality of our noise samples. Figure 12 shows an ulp
error plot of ten thousand samples. We see that all samples
are accurate to 1 ulp and most are accurate to 1/2 ulp.

Statistical tests, such as the χ2 test or the Anderson-Darling
test [6] are not necessary, since (a) we know that the derivation
of the original Box-Muller algorithm itself is correct and
(b) we generate the samples accurately within the 16 bits
resolution. Figure 13 shows the PDF of our noise samples for
a population of ten million, while Figure 14 shows the PDF
between 7σ and 8.2σ for a population of ten thousand. In both
cases, our noise samples closely follow the true Gaussian PDF.

Various hardware implementations of our Box-Muller archi-
tecture are compared against several software implementations
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Fig. 13. PDF of the generated noise from our design for a population of ten
million samples. The black solid line indicates the ideal Gaussian PDF.
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Fig. 14. PDF of the generated noise from our design for a population of ten
thousand samples between 7σ and 8.2σ. The black solid line indicates the
ideal Gaussian PDF.

based on the Wallace [9], Ziggurat [7], polar and Box-Muller
method [6], which are known to be the fastest methods for
generating Gaussian noise on instruction processors. For the
Wallace and Ziggurat methods, FastNorm3 available in [29]
with maximum quality setting and rnorrexp available in [7]
are used. The software implementations are run on an Intel
Pentium-4 3 GHz PC and an AMD Athlon-64 3000+ 1.8
GHz PC, both equipped with 2 GB DDR-SDRAM. They are
written in ANSI C and compiled with the GNU gcc 3.3.3 com-
piler with -O3 optimization, generating IEEE double-precision
floating-point numbers. In order to make a fair comparison,
we use the Tausworthe URNG for all implementations. The
Tausworthe URNG can generate 110 million 32-bit uniform
random numbers per second on an Intel Pentium-4 3 GHz
PC. The comparisons are shown in Table I. We see that our
hardware designs are faster than software implementations by
11–5408 times, depending on the device used and the resource
utilization. It is also important to note that the software
implementations could certainly be made somewhat faster by
utilizing assembler-level optimizations. That said, the FPGA
implementations are approximately two to three orders of
magnitude faster in terms of throughput than the software
implementations, and even the best assembler-level coding

TABLE I
THROUGHPUT COMPARISONS OF VARIOUS HARDWARE AND SOFTWARE

GAUSSIAN NOISE GENERATORS. THE XC2VP100-7 FPGA BELONGS TO

THE XILINX VIRTEX-II PRO FAMILY, XC4VLX100-12 FPGA BELONGS

TO THE XILINX VIRTEX-4 LX FAMILY, THE XC2V4000-6 BELONGS TO

THE XILINX VIRTEX-II FAMILY, WHILE THE XC3S5000-5 BELONGS TO

THE LOW-COST XILINX SPARTAN-III FAMILY.

platform speed method throughput
[MHz] [million/sec]

XC2VP100-7 FPGA 95 37 inst 7030.0
XC4VLX100-12 FPGA 375 1 inst 750.0
XC2V4000-6 FPGA 233 1 inst 466.0
XC3S5000-5 FPGA 181 1 inst 362.0
Intel Pentium-4 PC 3000 Wallace 33.3
AMD Athlon-64 PC 1800 Wallace 30.3
Intel Pentium-4 PC 3000 Ziggurat 27.8
AMD Athlon-64 PC 1800 Ziggurat 26.7
Intel Pentium-4 PC 3000 Polar 9.1
AMD Athlon-64 PC 1800 Polar 7.7
Intel Pentium-4 PC 3000 Box-Muller 2.1
AMD Athlon-64 PC 1800 Box-Muller 1.3

would leave a large performance gap. Thus, the message of
Table I is that, as one would expect, the dedicated hardware
implementation is significantly faster than what is achievable
with programmable software platforms.

Table II shows comparisons of our design against four other
designs: Gaussian noise generator block available in Xilinx
System Generator 7.1 [17], the Ziggurat design in [16], our
previous Box-Muller design [15], and our Wallace design [14].
Note that the Xilinx block is based on Xilinx’s AWGN
core 1.0 architecture [12]. In order to make the comparisons
fair, all designs are placed-and-routed on a Xilinx Virtex-II
XC2V4000-6 FPGA and hand placement-and-routing is not
performed. We observe that our design has the best noise
quality, the maximum obtainable σ multiple and the best
throughput/area ratio. The clock speed of our design is higher
than others due to more aggressive pipelining.

IX. CONCLUSIONS

We have presented a hardware Gaussian noise generator
using the Box-Muller method to aid simulations involving
large numbers of samples. The architecture involves a series
of elementary function evaluations, which are computed using
fixed-point arithmetic. In order to obtain minimal signal bit-
widths while respecting the accuracy requirements, we per-
form error analysis based on the MiniBit framework [25]. Two
16-bit noise samples are generated every clock, and due to the
accurate error analysis, every sample is analytically guaranteed
to be accurate to one unit in the last place. The noise generator
accurately models the true Gaussian PDF out to 8.2σ.

The design has been realized in FPGA technology. An
implementation on a Xilinx Virtex-4 XC4VLX100-12 FPGA
occupies 1452 slices, 3 block RAMs and 12 DSP slices, and
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TABLE II
COMPARISONS OF DIFFERENT HARDWARE GAUSSIAN NOISE GENERATORS IMPLEMENTED ON A XILINX VIRTEX-II XC2V4000-6 FPGA. “CLT” REFERS

TO THE CENTRAL LIMIT THEOREM.

Xilinx [17] Zhang [16] Lee [15] Lee [14] this work
method Box-Muller & CLT Ziggurat Box-Muller & CLT Wallace Box-Muller
slices 653 891 2514 770 1528
block RAMs 4 4 2 6 3
MULT18X18s 8 2 8 4 12
clock speed [MHz] 168 170 133 155 233
samples / clock 1 0.993 1 1 2
million samples / sec 168 168 133 155 466
max σ 4.8 unknown 6.7 unknown 8.2
quality low high high high very high
noise bit-width 16 32 32 24 16
ulp accuracy guarantee no no no no yes

is capable of generating 750 million samples per second at a
clock speed of 375 MHz. Further performance improvements
are obtained through exploiting parallelism: 37 instances of the
noise generator on a Xilinx Virtex-II Pro XC2VP100-7 FPGA
can generate seven billion noise samples per second, which is
over 200 times faster than an Intel Pentium-4 3 GHz PC. The
noise generator is currently being used at the Jet Propulsion
Laboratory, NASA to evaluate the performance of low-density
parity-check codes for deep-space communications.

Future work includes applying our design methodology to
other distributions, including Cauchy, exponential and Weibull.
These can be generated by evaluating the inverse cumulative
distribution function (CDF) of the distribution [8], which can
be approximated via polynomials.
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[8] W. Hörmann and J. Leydold, “Continuous random variate generation
by fast numerical inversion,” ACM Trans. Modeling and Computer
Simulation, vol. 13, no. 4, pp. 347–362, 2003.

[9] C. Wallace, “Fast pseudorandom generators for normal and exponential
variates,” ACM Trans. Mathematical Software, vol. 22, no. 1, pp. 119–
127, 1996.

[10] G. Box and M. Muller, “A note on the generation of random normal
deviates,” Annals of Mathematical Statistics, vol. 29, pp. 610–611, 1958.

[11] E. Boutillon, J. Danger, and A. Gazel, “Design of high speed AWGN
communication channel emulator,” Analog Integrated Circuits and Sig-
nal Processing, vol. 34, no. 2, pp. 133–142, 2003.

[12] Additive White Gaussian Noise (AWGN) Core v1.0, Xilinx Inc., 2002,
http://www.xilinx.com.

[13] E. Fung, K. Leung, N. Parimi, M. Purnaprajna, and V. Gaudet, “ASIC
implementation of a high speed WGNG for communication channel
emulation,” in Proc. IEEE Workshop on Signal Processing Systems,
2004, pp. 304–409.

[14] D. Lee, W. Luk, G. Zhang, P. Leong, and J. Villasenor, “A hardware
Gaussian noise generator using the Wallace method,” IEEE Trans. VLSI
Syst., vol. 13, no. 8, pp. 911–920, 2005.

[15] D. Lee, W. Luk, J. Villasenor, and P. Cheung, “A Gaussian noise
generator for hardware-based simulations,” IEEE Trans. Computers,
vol. 53, no. 12, pp. 1523–1534, 2004.

[16] G. Zhang, P. Leong, D. Lee, J. Villasenor, R. Cheung, and W. Luk,
“Ziggurat-based hardware Gaussian random number generator,” in Proc.
IEEE Int’l Conf. Field-Programmable Logic and its Applications, 2005,
pp. 275–280.

[17] Xilinx System Generator User Guide v7.1, Xilinx Inc., 2005, http://www.
xilinx.com.

[18] R.C. Tausworthe, “Random numbers generated by linear recurrence
modulo two,” Mathematics and Computation, vol. 19, pp. 201–209,
1965.

[19] G. Marsaglia, Diehard: a battery of tests of randomness, 1997, http:
//stat.fsu.edu/∼geo/diehard.html.

[20] P. L’Ecuyer, “Maximally equidistributed combined Tausworthe genera-
tors,” Mathematics of Computation, vol. 65, no. 213, pp. 203–213, 1996.

[21] V. Lefevre, J. Muller, and A. Tisserand, “Toward correctly rounded
transcendentals,” IEEE Trans. Computers, vol. 47, no. 11, pp. 1235–
1243, 1998.

[22] M.J. Schulte and E.E. Swartzlander Jr., “Hardware designs for exactly
rounded elementary functions,” IEEE Trans. Computers, vol. 43, no. 8,
pp. 964–973, 1994.

[23] J. Muller, Elementary Functions: Algorithms and Implementation.
Birkhauser Verlag AG, 1997.

[24] J. Walther, “A unified algorithm for elementary functions,” in Proc.
AFIPS Spring Joint Computer Conf., 1971, pp. 379–385.

[25] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “MiniBit: Bit-

http://www.xilinx.com�
http://www.xilinx.com�
http://www.xilinx.com�
http://stat.fsu.edu/~geo/diehard.html�
http://stat.fsu.edu/~geo/diehard.html�


IEEE TRANSACTIONS ON COMPUTERS 13

width optimization via affine arithmetic,” in Proc. ACM/IEEE Design
Automation Conf., 2005, pp. 837–840.

[26] L. de Figueiredo and J. Stolfi, “Self-validated numerical methods and
applications,” in Brazilian Mathematics Colloquium monograph. IMPA,
Brazil, 1997.

[27] V. Oklobdzija, “An algorithmic and novel design of a leading zero
detector circuit: comparison with logic synthesis,” IEEE Trans. VLSI
Syst., vol. 2, no. 1, pp. 124–128, 1994.

[28] M. Pillmeier, M. Schulte, and E. W. III, “Design alternatives for
barrel shifters,” in Proc. SPIE Advanced Signal Processing Algorithms,
Architectures, and Implementations, 2002, pp. 436–447.

[29] C. Wallace, “MDMC Software - Random Number Generators,” 2003,
http://www.datamining.monash.edu.au/software/random.

Dong-U Lee received the BEng degree in infor-
mation systems engineering and the PhD degree
in computing, both from Imperial College London
in 2001 and 2004, respectively. He is currently a
postdoctoral researcher at the Electrical Engineering
Department, University of California, Los Angeles
(UCLA), where he is working on algorithms and im-
plementations for deep-space communications with
the Jet Propulsion Laboratory, and hardware designs
of mathematical function evaluation units. His re-
search interests include computer arithmetic, com-

munications, design automation, reconfigurable computing and video image
processing. He is a member of the IEEE.

John D. Villasenor received the BS degree in 1985
from the University of Virginia, the MS in 1986
from Stanford University, and the PhD. in 1989 from
Stanford, all in Electrical Engineering. From 1990
to 1992, he was with the Radar Science and Engi-
neering section of the Jet Propulsion Laboratory in
Pasadena, California, where he developed methods
for imaging the earth from space. He joined the
Electrical Engineering Department at the University
of California, Los Angeles (UCLA) in 1992, and
is currently Professor. He served as Vice Chair of

the Department from 1996 to 2002. At UCLA, his research efforts lie in
communications, computing, imaging and video compression, and networking.
He is a senior member of the IEEE.

Wayne Luk received the MA, MSc, and PhD de-
grees in engineering and computer science from the
University of Oxford, Oxford, United Kingdom. He
is a member of academic staff in Department of
Computing, Imperial College of Science, Technol-
ogy and Medicine and leads the Custom Computing
Group there. His research interests include theory
and practice of customizing hardware and software
for specific application domains, such as graphics
and image processing, multimedia, and communi-
cations. Much of his current work involves high-

level compilation techniques and tools for parallel computers and embedded
systems, particularly those containing reconfigurable devices such as field-
programmable gate arrays. He is a member of the IEEE.

Philip H.W. Leong received the BSc, BE and PhD
degrees from the University of Sydney in 1986, 1988
and 1993 respectively. In 1989, he was a research
engineer at AWA Research Laboratory, Sydney Aus-
tralia. From 1990 to 1993, he was a postgraduate
student and research assistant at the University of
Sydney, where he worked on low power analogue
VLSI circuits for arrhythmia classification. In 1993,
he was a consultant to SGS Thomson Microelec-
tronics in Milan, Italy. He was a lecturer at the
Department of Electrical Engineering, University of

Sydney from 1994-1996. He is currently a Professor in the Department of
Computer Science and Engineering at the Chinese University of Hong Kong
and the Director of the Custom Computing Laboratory. He is the author of
more than 70 technical papers and 5 patents. His research interests include
reconfigurable computing, digital systems, parallel computing, cryptography
and signal processing. He is a senior member of the IEEE.

http://www.datamining.monash.edu.au/software/random�

