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Abstract

The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to
enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in
the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with
properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges
remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction,
etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic
concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the
automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a
well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic con-
tent depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have
similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our
annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach
is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established
baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of
liver computed tomography (CT) images.
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1. Introduction

1.1. Motivation and Aims

Medical imaging is a fundamental component of modern
healthcare with roles in patient diagnosis, treatment planning,
and assessment of response to therapy. A direct consequence of
this is the rise in medical imaging informatics research, includ-
ing content-based image retrieval [1, 2], modality-classification
and case-based retrieval [3], classification [4, 5], and annota-
tion [5–7]. Semantic image annotation is also emerging as a
research question, in which the main research challenge is to
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detect subtle differences in low-level image features and to re-
late them to higher-level labels derived from a standard termi-
nology. Ultimately the goal is to apply the annotation tech-
nologies for the automatic generation of structured imaging re-
ports [8, 9].

Annotation is also considered to be a prerequisite for se-
mantic medical search engines that enable radiologists to find
medical images, reports, and associated publications more effi-
ciently [7]. Automatic semantic annotation is needed because
it is difficult, time-consuming and expensive to manually an-
notate the rich contents of these items. The annotation and
image markup use case of the caBIG project [10], which de-
scribed a software library that could be used for the annotation
of large collections of images, provides an example of the pon-
derous nature of manual annotation processes. Wennerberg et
al. [7] improved the efficiency of this manual annotation pro-
cess using an ontology modularisation tool that identifies and
ranks fragments of an ontology that are relevant to the annota-
tion task; this relevance is based upon the specific domain (e.g.,
lymphoma) and hierarchical relationships of terms already an-
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notated. However, these manual annotation approaches require
physicians to subjectively determine the labels that are relevant
to a particular image based on the physicians’ expertise and
prior experience.

In contrast, automatic image annotation is conducted on the
basis of quantifiable image features. The combination of fea-
tures present in each image suggests the annotations that are
relevant. Many existing approaches described in the summary
paper by Deselaers et al. [11] only annotated the images with
the properties of the image, such as the image modality, body
orientation, body region and biological system being examined.
Setia et al. [5] extracted local feature descriptors from the most
salient (interesting) points on each image to capture the geo-
metric relationships present in the image; a hierarchical classi-
fication method was used to annotate each image by the image
properties listed earlier. In a similar application, Tommasi et
al. [6] proposed a method that extracted global and local fea-
tures using three classification strategies that emphasised fea-
ture fusion at different stages of the annotation process. Ko et
al. [12] presented a method that utilised a random forest clas-
sifier together with a predefined body relation graph to identify
and annotate the body region shown in the image.

A more difficult objective is to annotate the images with clin-
ically relevant content, such as the presence of calcification,
mass effect, etc. In the general (i.e., non-medical) domain, im-
age annotation tasks have moved rapidly from object identifica-
tion to sentence generation, where the aim is to describe the im-
ages through words, in the same way in which a human witness
might describe a scene that they have observed; several such
methods have been described in a recent summary paper [13].
Kulkarni et al. [14] used computer vision based object detection
to construct a graph of the objects and labeled the graph based
upon statistics mined from large corpora of descriptive text; the
labels and graph relationships could then be used to generate
descriptive sentences.

One of the major hurdles in achieving this objective for med-
ical images is that there are likely to be thousands of semantic
labels to learn and often very few labeled training samples [15].
Thus a major challenge of such research is the development of
categorisation and annotation techniques that are less hindered
by lack of training samples [16]. To reduce problems caused by
lack of training data, Gimenez et al. [17] avoided classification
methods and instead annotated liver CT images using logistic
regression, through the least absolute shrinkage and selection
operator (LASSO). However, their method only annotated bi-
nary semantic outcomes that could be presented by positive or
negative observations, e.g., whether or not a lesion was homo-
geneous. In a follow-up study, Depeursinge et al. [18] learned
semantic terms describing the visual appearance of liver lesions
derived from a linear combination of multi-scale wavelet fea-
tures. This allowed their method to model each annotation at
the the most relevant image scale. The method predicted the
probability that a particular semantic description (e.g., irregu-
lar lesion margin) was applicable to the lesion in the image but
did not annotate the effects on anatomical structures, e.g., the
proximity of the lesion to the hepatic vasculature.

The recognition of image content also falls within the scope

of another important area of medical imaging informatics re-
search called content-based image retrieval (CBIR) [1]. In
CBIR, low-level visual features such as intensity, texture,
shape, and the spatial arrangement of objects are used to de-
termine which images are similar to a given query [19]. A key
challenge for CBIR is the semantic gap, which is the difference
between machine-computed similarity and a human’s interpre-
tation of similarity [19]. Many different CBIR algorithms have
been investigated for this purpose; a summary can be found in
the recent review by Kumar et al. [2]. Well-established CBIR
techniques are therefore designed to relate low-level image fea-
tures to higher-level semantic concepts. We hypothesise that
the problem of automatic semantic image annotation could be
addressed in a related fashion, by adapting the ability of CBIR
techniques to leverage low-level image features in the search
for images with similar high-level semantic concepts.

Thus in this paper, we present a method for the automatic
annotation of medical images that is derived from CBIR tech-
niques. Given an image to annotate, we propose to identify or
retrieve a collection of semantically similar images that have
already been labelled and use this collection to determine the
best semantic annotations for the unlabelled image. Our anno-
tation method is designed for limited training data compared to
the number of annotations that need to be automatically recog-
nised. We suggest that the technique would be applicable re-
gardless of the underlying retrieval strategy and therefore we
describe two ways of identifying the best annotations: either
through multi-class classification and nearest-neighbour search,
both of which are well-established CBIR methods. We evalu-
ated our work on the annotation of liver CT images by com-
paring our annotation method to several other well-established
techniques. We also compared our method to the state-of-the-
art techniques submitted to the Imaging track of the Conference
and Labs of the Evaluation Forum (ImageCLEF) [20] Liver
Annotation Challenge [21]; the outcomes were reported at the
CLEF workshop [22]. In this paper we expand upon the report
by including: (i) detailed definitions of the classification and
nearest neighbour methods for annotation, and (ii) a more com-
prehensive evaluation, which includes comparison with well-
established techniques that were not submitted to the Image-
CLEF Liver Annotation Challenge.

1.2. Terminology and Notation
We employ the following terminology in the remainder of

this paper. A question refers to a specific annotation task, i.e.,
an element of the structured report that needs to be automat-
ically filled. A label is an annotation that could possibly be
assigned to a question. An answer is the label that our method
automatically assigns to the question based on the analysis of
the image features; the answer is chosen from a set of labels
that are unique to each question. The term query refers to a sin-
gle un-annotated image volume that will be annotated using our
approach.

We also use the following notation. Let Ω be a question and
LΩ be the set of labels for Ω with |LΩ| = l. During annotation,
we also let L+

Ω
⊆ LΩ denote a possible set of answers (needed

only in case of ties) and L ∈ L+
Ω

denotes the final answer. Note
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that since only one label is chosen as the final answer (i.e., |L| =
1) then L = L+

Ω
⇔

∣∣∣L+
Ω

∣∣∣ = 1 (there were no ties).

2. Materials and Methods

2.1. Dataset

We used a public dataset of volumetric (3D) computed to-
mography (CT) images of the liver from the ImageCLEF 2014
Liver Annotation Challenge [21]. The dataset contained 50 CT
volumes cropped to the region around the liver; the volumes
had varied resolutions (x: 190–308 pixels, y: 213–387 pix-
els, slices: 41–588) and pixel spacings (x, y: 0.674–1.007mm,
slice: 0.399–2.5mm). A mask of the liver pixels and the bound-
ing box for a selected lesion were provided for each image.

The data also included a set of 60 well-established image
features (with a total dimensionality of 458) that had been ex-
tracted from the images in the dataset. We refer to these as com-
puter generated (CoG) features and they are further described in
Section 2.3.

The dataset also contained 73 ground truth annotations.
These annotations were independently determined by an ex-
perienced clinician based upon the semantic labels in the ON-
tology of Liver for Radiology (ONLIRA) [23]. The ontology
described the different sets of possible labels LΩ for different
questions Ω. Several label sets have one or two special labels
with the following meaning:

• other: none of the other labels in LΩ fully answer the
question.

• N/A: the question Ω is not relevant to this image.

Only 65 of the 73 annotations were relevant for the task [21];
questions with unbounded labels (e.g., measurements) were not
included as part of the evaluation. There were 145 unique labels
among these 65 questions; the median diversity was 2 possible
labels and the maximum diversity was 10 labels.

2.2. Method Overview

Our aim was to derive the annotations of a query based upon
similarity to other images. We adapted two state-of-the-art ap-
proaches, classification of image similarity using support vector
machines (SVMs) [24] and weighted nearest-neighbour (WNN)
search [25] to show that our method is applicable regardless of
the underlying retrieval strategy.

Multi-class SVM classification was used because SVMs are
effective in high-dimensional spaces where the dimensionality
is higher than the sample size. SVMs are also versatile as they
can use different kernel functions for different classification
tasks. These characteristics of SVMs make them appropriate
for our particular dataset, in which there were a wide variety of
annotation labels with a small number of training samples. The
WNN method was used because it uses the most similar sam-
ples for labelling, which is important when the distribution of
samples is not known. Thus, it gives higher annotation priority
to more similar samples than to those (dissimilar samples) that
are further away. This was appropriate for our dataset, where

Table 1: Visual Features
Partition Feature Groups Dimensionality

Liver
- Intensity
- Size 3

Lesion

- Intensity
- Location
- Shape
- Size
- Texture

353

Vessel - Size 2

All Lesions

- Counts
- Intensity
- Size
- Texture (Haar only)

88

Global SIFT BoVF 1000

different annotations had varying distributions of labels. In ad-
dition, WNNs are also useful in cases where there are no clear
class boundaries, such as between related terms with very sub-
tle differences.

We applied similar image annotation processes for both
methods. Visual features were first extracted from the images.
The classification or similarity model was then trained using the
extracted visual features; feature selection was also performed
in this phase. After the model is developed, new queries can
then be annotated. This is done by comparing the features ex-
tracted from these images to the model as described in Sec-
tions 2.4 and 2.5.

2.3. Image Features

Table 1 summarises the features that were used in our experi-
ments. These features are detailed in the following subsections.

2.3.1. Dataset Features
The dataset contained computed generated (CoG) image fea-

tures that had already been extracted from the liver, the hepatic
vasculature, and the marked (primary) lesion. Image features
were also extracted from all lesions in the image and accumu-
lated into a global feature value (e.g., mean intensity). The
features described 3D object shape properties (e.g., volume,
surface area, sphericity, solidity, convexity, Hu shape invari-
ants [26]), texture information (e.g., Haralick [27], Gabor [28],
Tamura [29], Haar [30]), and pixel intensity information. The
ImageCLEF 2014 task documentation [21] provides a detailed
list of the CoG image features.

We cleaned the CoG feature data by removing feature di-
mensions with missing values (i.e., given a not-a-number or
NaN value) or that were used to scale other features and had
no variation across all samples. These feature dimensions were
excluded from all samples:

1. Group: Lesion. Feature: Anatomical Location (5 dimen-
sions). Reason: All dimensions were missing (a NaN
value) for one of the images.
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2. Group: Lesion. Feature: Hu Moments (3 dimensions).
Reason: All dimensions were missing (a NaN value) for
one of the images.

3. Group: Lesion. Feature: Histogram (only the first two
dimensions). Reason: These features were the upper and
lower bounds and were the same for all samples. They
were not needed after normalisation.

4. Group: All Lesions. Feature: HistogramOfAllLesions
(only the first two dimensions). Reason: These features
were the upper and lower bounds and were the same for
all samples. They were not needed after normalisation.

Removing feature dimensions with missing values allowed us
to keep the same sample size (50) in contrast to removing the
entire sample, which would have made our limited training
dataset even smaller. The cleaned CoG feature set had a total
dimensionality of 446.

2.3.2. Bag of Visual Features
We also created a bag of visual features (BoVF) representa-

tion of the image. This was derived from scale invariant feature
transform (SIFT) descriptors [31] extracted from key points de-
tected in the 2D slices of the CT images. The SIFT descrip-
tors were extracted from all of the axial slices on an image.
We randomly sampled 5% of the descriptors extracted from the
training dataset. We generated a visual codebook by group-
ing the subsampled descriptors using k-means clustering with
k = 1000. This value of k has been successfully used in other
medical image retrieval projects on diverse imaging data, e.g.,
x-rays, magnetic resonance, CT, etc. [32]. The subsampled
clustering process was much faster than clustering on the full
set of descriptors and created codebooks of similar quality [33].
The visual code for each cluster was the cluster centroid, i.e.,
the mean of all descriptors within that cluster.

We then assigned a single visual code to every key point in
an image. For each key point, we calculated the Euclidean dis-
tance between its descriptor and all of the visual codes (cluster
centroids) in the codebook; the codebook entry with the lowest
distance (i.e., most similar descriptor features) was assigned as
the visual code for the key point. This process was repeated for
all of the key points in all of the axial slices in an image. We
then created a BoVF descriptor using a k-bin histogram repre-
senting the frequency of the visual codes in that image [32].
The visual codes from all of the axial slices were pooled into a
single descriptor.

2.3.3. Feature Normalisation
The features we extracted had a variety of ranges. This dif-

ference in range would cause some feature dimensions to have
a higher influence on distance computation (see Section 2.5)
compared to others. We therefore normalised the features to
the range [0, 1] by linearly scaling them to a random variable
with zero mean and unit variance and shifting the values so they
were within the desired range. Let x be the value of a feature f ,
and µ f and σ f be the mean and standard deviation of f in the

Multiple 
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Features
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Train Stage 1 

Classifiers

Train Stage 2 
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1-v-all SVMs

STAGE 2:

1-v-1 SVMs

No

Yes

Figure 1: An overview of the classification scheme for annotation.

dataset. The normalised value x̃ of x was determined as follows:

x̃ =

(
x − µ f

)
/3σ f + 1

2
(1)

According to Aksoy and Haralick [34], this equation normalises
99% of the feature values to the range [0, 1]; normalised values
lower than 0 were set to 0, while those higher than 1 were set
to 1. This normalisation scheme was shown to be effective in
prior image retrieval research [35].

2.4. Retrieval Strategy: Two-Stage SVM Classification
SVMs [24] are a well-established classification technique

with many applications in medical CBIR [36, 37]. SVMs are
supervised learning models that can be used for binary classi-
fication. An SVM divides labelled training data into two cate-
gories and classifies new samples into one of these categories.
Multi-class problems are usually solved with banks of multiple
SVMs.

We adapted such an approach for our multi-class, multi-label
annotation problem as shown in Figure 1. The core idea was to
divide the problem into two stages for each question. The first
stage identified a collection of labels that represented groups of
images with similar image features (L+

Ω
). The second stage was

used to evaluate each of the elements of this collection to select
the best answer (L).

Each stage in our classification approach comprised a bank
of several SVM classifiers. For every label A ∈ LΩ, we trained
an A-vs-rest (1-vs-all) SVM classifier, hence forming l 1-vs-all
SVMs. We also trained A-vs-B (1-vs-1) SVMs for every pair
of labels A, B ∈ LΩ where A , B, forming a total of

(
l2 − l

)
/2

1-vs-1 SVMs. For every question, our first stage was composed
of the 1-vs-all SVMs and the second stage was composed of the
1-vs-1 SVMs. This two stage approach was repeated separately
for each question.

After training, we annotated the queries using the following
procedure. We first extracted the same features from the query
as described in Section 2.3. The query image was then clas-
sified using the first stage. If only one of the 1-vs-all SVMs
returned a positive classification (i.e., there was no tie) then the
label corresponding to that classifier was adopted as the answer.
If the classifiers in the first stage assigned multiple labels (i.e.,
multiple 1-vs-all classifiers returned positive results) then the
second stage was activated. The output of the first stage was
the set of labels given a positive response by their associated
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Figure 2: An overview of the WNN scheme for annotation. The dashed arrows
indicate an optional feature selection process.

1-vs-all SVM, i.e., L+
Ω

. During the second stage, we classi-
fied the query using the 1-vs-1 classifiers for all the labels in
L+

Ω
(i.e., the 1-vs-1 classifiers for the tied labels). A majority

voting scheme was used to select the answer.
Two tiebreaker situations remained after both classification

stages. The ties included the case where the first stage did not
return a positive label and when there was a tie in the vote dur-
ing the second stage (multiple labels had the highest majority
vote). In both of these situations, we set the answer to “other”.
For such ties in questions Ω where “other” < LΩ, we selected
the label “N/A” if it was available or “false” for questions that
expected a boolean answer.

Our design of the two stage classification scheme was due to
the unbalanced training dataset. We expected that the classifiers
for labels with few samples would have relatively low accuracy
and thus the two stage approach introduced further discrimina-
tive power, especially in the case of ties.

2.5. Retrieval Strategy: Weighted Nearest-Neighbours

Our WNN approach for annotation used the most similar
training images to select the answers for the query. The core
idea was that the query would be annotated with the same la-
bel assigned to a collection of images with similar features.
An overview of the method is shown in Figure 2. We created
two variations of this approach: the first variation used the en-
tire feature space to determine the nearest-neighbours while the
second variation used forward sequential feature selection [38]
to define a unique optimal feature space for each individual Ω.
Thus, in the first variation, the process in Figure 2 was only per-
formed once; in the second variation, the process was repeated
for each Ω individually.

To locate the nearest-neighbours, we calculated the dissimi-
larity (s) of the features of each training image from the features
of the query, using the Euclidean distance:

s (Q,T ) =

√√√ d∑
i=0

(qi − ti)2 (2)

where Q was the feature vector of the query image (Q), T was
the feature vector of a training image (T ), qi was the i-th di-
mension of Q, ti was the i-th dimension of T , and d was the di-
mensionality of the feature set. Under this formulation, higher
values of s indicated greater dissimilarity; s (Q,T ) = 0 implied
that Q and T were exactly similar.

The set of n images in the training set with the lowest values
of s were chosen as the nearest neighbours because the most
similar images are generally expected to be retrieved within
the first few results (referred to as early precision) [32]. Let
S = {s1, ..., sn} be the dissimilarity values of these images sorted
in ascending order. A weighted voting scheme was used to se-
lect the answer for each question using this set of dissimilarity
values. The weighted vote vi for the i-th most similar image
was given by:

vi =
s1 + ε

si + ε
(3)

where si ∈ S was the dissimilarity value of the i-th most similar
image and ε = 1.18×10−38 was used to avoid divisions by zero.

The weighted vote VA for a label A ∈ LΩ was given by:

VA =

n∑
i=1

λA,ivi (4)

where

λA,i =

1 if A is the label of Ti

0 otherwise
(5)

and Ti was the i-th nearest-neighbour (training image).
In the case of a tie (multiple labels having the same weighted

vote), we set the answer to “other”. When “other” < LΩ, we se-
lected the label “N/A” if it was available or ”false” for questions
that expected a boolean answer.

We accounted for the small training dataset by weighting the
value using Equation 3. Neighbours with a higher similarity
would thus have a stronger vote compared to images with a
lower similarity. The weighting scheme ensured that the em-
phasis was placed on the labels of the neighbours that were
closest to the query, even if there were a larger number of neigh-
bours of a different label that were further away. This is in con-
trast to a majority voting scheme, where labels that had a higher
frequency in the dataset would have a higher chance to be se-
lected as the answer (depending on the value of n).

3. Evaluation

3.1. Experimental Procedure

We used 10-fold cross-validation to evaluate the accuracy of
our annotation methods on Dataset One. We evaluated the fol-
lowing variations of our methods:

• Two-Stage SVM classification with the following kernels:

– linear

– polynomial

– quadratic

– radial basis function (RBF)

– multilayer perceptron (MLP)

• WNN search

• WNN search with sequential feature selection
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For WNN search, we repeated our experiments with cross-
validation to find the optimal value of n = 20. We compared
our methods to the following well-established techniques from
the literature:

• One-Stage (standard) SVM classification with the follow-
ing kernels:

– linear

– polynomial

– quadratic

– radial basis function (RBF)

– multilayer perceptron (MLP)

• LASSO-based regression used in prior annotation re-
search [17]

We calculated the accuracy of the annotation by comparing the
answer given by each approach to the ground truth.

Each method was tested using three different feature sets:

• Feature Set 1: The CoG features after cleaning (total di-
mensionality = 446).

• Feature Set 2: SIFT BoVF (total dimensionality = 1000).
The visual codebook (Section 2.3) was generated sepa-
rately for each fold on the training data only so there was
no bias towards the test data.

• Feature Set 3: Feature Set 1 + Feature Set 2 (total dimen-
sionality = 1446).

3.2. Results

Table 2 summarises the annotation accuracy of our method
(two-stage SVM with different kernels, nearest-neighbour
search) in comparison with baseline methods (one-stage SVM
and LASSO regression); the mean and standard deviation were
calculated over all 10 folds. Figure 3 shows the mean accuracy
of the baseline methods for individual questions and Figure 4
shows the same information for the proposed methods. The re-
sults demonstrate that WNN search has the highest mean accu-
racy and consistently high accuracy across most questions (48
questions with accuracy ≥ 90%). All variations of our proposed
methods also have a higher accuracy than the LASSO method
used in prior work. Note that the baseline LASSO method only
converged for Feature Set 1 and only when using the unnor-
malised feature set and thus only the results for this situation is
shown in Table 2 and Figure 3.

3.3. Outcomes of ImageCLEF Annotation Challenge

We also submitted our method to the ImageCLEF Liver An-
notation challenge where it was independently evaluated and
compared to other methods on a different test dataset. In 2014,
our method outperformed all other methods, including gener-
alised coupled tensor factorisation (GCTF) [39] and ensembles
of different classifiers (Ensemble) [40]. Our method also scored
higher than the single additional method submitted in 2015,

which used a combination of Random Forests with shape, tex-
ture, and lesion features [41]. For more details, we refer inter-
ested readers to the papers cited in this section and the summary
papers [21, 42].

3.4. Discussion
Table 2 show that the proposed WNN search achieved the

highest annotation accuracy, outperforming the baseline and
other proposed methods. These results for WNN search were
consistent across all three feature sets. The high results
achieved by the WNN search was due to the way in which
the labels were prioritised; the labels of images that were more
similar to the query were given more importance than those of
images that were less similar, even if the latter collection was
larger. A relatively simple approach like WNN retrieval was
ideal as the annotation would be dependent on a subset of ma-
jor discriminating image features. WNN also performs well in
the situation where items of a class are clustered very closely
together within the feature space even if there are no clear class
boundaries, which can be the case when the differences are sub-
tle or the labels are semantically related (e.g., “obliterated” vein
lumen versus “partially obliterated”).

In our WNN approach, we used a distance-based normali-
sation for scoring different labels (see Equation 3). The vote
varies depending on the similarity of the image thereby allow-
ing us to account for subtle differences between very similar
images. A contrasting method is rank normalisation, in which
the vote is dependent on the rank of the neighbouring image.
However, weights that are based on rank alone cannot deter-
mine whether the two images are subtly or distinctly different.
In contrast, a distance-based normalisation would have very
similar weights for subtly different images and very different
weights for distinctly different images.

The accuracy of the WNN method with feature selection
was lower than that of WNN method with no feature selec-
tion. These results are counter-intuitive as the expectation was
that feature selection would significantly improve the accuracy
of the annotation. Similarly, the low accuracy of the LASSO
method, which performs variable selection by shrinking param-
eter estimates (coefficients of the regression) closer to zero, was
also unexpected. The lower accuracy suggests that there was
less information for distinguishing between subtle cases. One
explanation for this could be that the dataset contained very few
subtle cases meaning there were very few samples from which
to derive optimal features or regression coefficients. A more di-
verse training dataset would include more subtle cases and we
suggest this would have a positive impact on the accuracy of
methods that use some form of feature selection. At our cur-
rent diversity (145 unique labels) WNNs with feature selection
has approximately 1% lower accuracy than WNNs without fea-
ture selection; this is not a statistically significant difference
(according to the Student’s t-test) and using a dataset with an
appropriate number of labels for the full diversity of liver anno-
tations would improve the accuracy when using methods with
feature selection.

We also discovered that our proposed two-stage SVM clas-
sification method had higher accuracies than one-stage SVMs
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One-Stage SVM 
(Linear)

One-Stage SVM 
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Figure 3: Accuracy of baseline annotation methods on different questions.

Table 2: Accuracy (%) of Different Methods (highest mean accuracy underlined)

Method
Feature Set

1: CoG 2: SIFT 3: CoG + SIFT
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

ba
se

lin
e

one-stage linear SVM 82.18 9.69 85.54 8.09 85.35 8.74

one-stage polynomial SVM 83.38 8.77 73.97 11.97 83.20 7.78

one-stage quadratic SVM 84.46 9.05 84.52 7.97 84.28 8.60

one-stage RBF SVM 84.86 7.35 86.12 8.02 84.86 7.35

one-stage MLP SVM 66.40 14.15 65.75 13.25 63.29 14.10

LASSO (unnormalised) 25.07 4.37 - - - -

pr
op

os
ed

two-stage linear SVM 84.00 9.96 86.98 8.12 86.49 8.89

two-stage polynomial SVM 84.95 8.94 77.60 12.97 84.83 8.27

two-stage quadratic SVM 85.72 9.18 85.91 8.04 85.94 8.79

two-stage RBF SVM 85.75 7.82 87.26 8.03 85.75 7.82

two-stage MLP SVM 70.55 15.05 69.78 14.55 67.38 15.48

WNN 87.75 8.74 88.74 7.93 87.75 8.83

WNN with feature selection 86.62 9.50 87.54 8.92 87.35 8.66
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Figure 4: Accuracy of proposed annotation methods on different questions.

using the same kernels (Table 2). These results are consistent
across all kernels and all three Feature Sets. This improvement
can be attributed to our second stage of 1-vs-1 SVMs breaking
ties whenever the first stage 1-vs-all SVMs indicates that mul-
tiple labels could be assigned to the question. The second stage
of SVMs are trained to discriminate specific pairs of labels and
are better able to decide which one is the better answer given
the image features of the query. In this manner, the first stage
retrieves the collection of most likely labels while the second
stage selects the best answer from this collection. An advan-
tage of our approach compared to using a 1-vs-1 approach for
all questions is the number of SVM classifications that need to
be performed. A 1-vs-1 approach would need l2−l

2 SVMs for
every question (Section 2.4), requiring over 700 SVM classifi-
cations for our set of questions.

It is interesting to note that one-stage RBF SVMs had the
same accuracy when using Feature Set 1 as when using Feature
Set 3. This was also true for two-stage RBF SVMs. Deeper
analysis showed that the accuracy was the same for every fold

and every question individually. This is a surprising finding and
suggests that the addition of CoG features hinders the higher ac-
curacy achieved by SIFT BoVF alone (Feature Set 2). The other
findings in Table 2 reveal that no one feature set was universally
better than the others. These outcomes indicate the possibility
that ensemble systems using different combinations of features
and image recognition methods could be a feasible method for
incrementally enhancing accuracy of the annotation. It is in-
teresting to note that, while Feature Set 3 worked best only in
combination with two-stage quadratic SVMs it generally had
the second highest accuracy for almost all the other methods;
this suggests that Feature Set 3 is more robust to the choice of
method. Feature Set 2 achieved ≥ 80% accuracy for most of the
methods that we evaluated. This is because SIFT features rep-
resent local features extracted from key points and are therefore
better able to encapsulate the most important visual character-
istics of each image. Another advantage of SIFT BoVF (used
in Feature Sets 2 and 3) is that its extraction is not dependent
upon any form of segmentation. As such Feature Set 2 can be
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applied in completely automatic annotation approaches.
The accuracy of our approach is consistently low for ques-

tions related to the area and characteristics of the lesions, as ev-
idenced by the dip in accuracy in the centre of the charts in Fig-
ures 3 and 4. Many of these questions had large label sets (up to
10 labels) and as such there were some labels that had only one
or two samples in the entire dataset. In this scenario, it is realis-
tic to expect a lower accuracy when annotating these very rare
cases. The effect of the small dataset meant that significance
testing would not be insightful as it would be heavily distorted
by the low accuracy of these very rare cases. However, it is
interesting to note that two-stage SVMs with polynomial and
MLP kernels had slightly higher accuracy than other methods
for these questions indicating their potential for annotating even
these rare cases. We could therefore achieve higher accuracies
by optimising each question separately, using unique annota-
tion methods and features for different questions, instead of the
current universal annotation technique. It would also be pos-
sible to improve the accuracy of these annotations by adapting
and integrating methods optimised specifically for annotating
lesion characteristics [18].

4. Conclusions

In this paper we provide a new concept for extending CBIR
methods to automatically annotate liver CT images, by deriv-
ing the annotations from the most semantically relevant im-
ages within the already labelled collection. Our methods had
higher annotation accuracy on small datasets when compared
to several baseline techniques. This was because the underly-
ing CBIR technologies we extended were effective in high di-
mensional spaces where the dimensionality was larger than the
sample size. Our work also scored the best results at the Image-
CLEF Liver Annotation Challenge.

Our methods enable the annotation of the semantic content
of the image and not simply annotation of the image modality
or body region, which was prevalent in earlier work [11]. Our
methods annotate more than just binary observations [17] and
are also capable of annotating the characteristics of the anatom-
ical structures in the image [18]. We have released an imple-
mentation of our method1 to encourage future research in se-
mantic image annotation using our work as a baseline.

In future work, we plan to improve our approach by an op-
timised fusion of methods in which each question is annotated
using the best performing method and feature set combination.
We will examine data augmentation techniques to boost the
number of training samples to ensure that annotations by our
method are significantly more accurate compared to baseline
methods. As part of this, we will also introduce methods to
make our approach robust to missing values in the data. We
will also investigate recent CBIR work that incorporates com-
plementary non-image information [43], e.g., the semantic dis-
tance [44] between related terms in an ontology. We will also

1http://sydney.edu.au/~engineering/it/~ashnil/code/

liverannot.html

examine emerging deep learning techniques that have shown
great promise in image recognition and classification [45, 46].
We have already begun adapting deep learning methods for
modality [47] and body region [48] annotation.

Acknowledgments

The authors would like to thank the ImageCLEF organisers
for their independent evaluation of our annotation method.

This work was supported in part by Australian Research
Council grants.

This research was supported by the Faculty of Engineering
and Information Technologies, The University of Sydney under
the Faculty Research Cluster Program.

References

[1] H. Müller, N. Michoux, D. Bandon, A. Geissbuhler, A review of content-
based image retrieval systems in medical applications—clinical benefits
and future directions, International Journal of Medical Informatics 73 (1)
(2004) 1 – 23.

[2] A. Kumar, J. Kim, W. Cai, D. Feng, Content-based medical image re-
trieval: a survey of applications to multidimensional and multimodality
data, Journal of Digital Imaging 26 (6) (2013) 1025–1039.

[3] J. Kalpathy-Cramer, A. G. S. de Herrera, D. Demner-Fushman, S. Antani,
S. Bedrick, H. Müller, Evaluating performance of biomedical image re-
trieval systems—An overview of the medical image retrieval task at Im-
ageCLEF 2004–2013, Computerized Medical Imaging and Graphics 39
(2015) 55–61.

[4] H. Pourghassem, H. Ghassemian, Content-based medical image classifi-
cation using a new hierarchical merging scheme, Computerized Medical
Imaging and Graphics 32 (8) (2008) 651 – 661.

[5] L. Setia, A. Teynor, A. Halawani, H. Burkhardt, Grayscale medical im-
age annotation using local relational features, Pattern Recognition Letters
29 (15) (2008) 2039 – 2045.

[6] T. Tommasi, F. Orabona, B. Caputo, Discriminative cue integration for
medical image annotation, Pattern Recognition Letters 29 (15) (2008)
1996 – 2002.

[7] P. Wennerberg, K. Schulz, P. Buitelaar, Ontology modularization to im-
prove semantic medical image annotation, Journal of Biomedical Infor-
matics 44 (1) (2011) 155 – 162.

[8] D. L. Weiss, C. P. Langlotz, Structured Reporting: Patient Care Enhance-
ment or Productivity Nightmare?, Radiology 249 (3) (2008) 739–747.

[9] F. M. Hall, The Radiology Report of the Future, Radiology 251 (2) (2009)
313–316.

[10] D. Channin, P. Mongkolwat, V. Kleper, K. Sepukar, D. Rubin, The
caBIGTM Annotation and Image Markup Project, Journal of Digital Imag-
ing 23 (2) (2010) 217–225.

[11] T. Deselaers, T. M. Deserno, H. Müller, Automatic medical image an-
notation in ImageCLEF 2007: Overview, results, and discussion, Pattern
Recognition Letters 29 (15) (2008) 1988 – 1995.

[12] B. C. Ko, J. H. Lee, J.-Y. Nam, Automatic medical image annotation
and keyword-based image retrieval using relevance feedback, Journal of
Digital Imaging 25 (4) (2012) 454–465.

[13] A. Gilbert, L. Piras, J. Wang, F. Yan, E. Dellandrea, R. Gaizauskas,
M. Villegas, K. Mikolajczyk, Overview of the ImageCLEF 2015 Scal-
able Image Annotation, Localization and Sentence Generation Task, in:
CLEF 2015 Working Notes, vol. 1391 of CEUR Workshop Proceedings,
2015.

[14] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A. Berg,
T. Berg, BabyTalk: Understanding and Generating Simple Image De-
scriptions, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 35 (12) (2013) 2891–2903.

[15] G. Wang, D. Forsyth, D. Hoiem, Comparative object similarity for im-
proved recognition with few or no examples, in: IEEE Conference on
Computer Vision and Pattern Recognition, 3525–3532, 2010.

9



[16] C. Lampert, H. Nickisch, S. Harmeling, Attribute-Based Classification
for Zero-Shot Visual Object Categorization, IEEE Transactions on Pattern
Analysis and Machine Intelligence 36 (3) (2014) 453–465.

[17] F. Gimenez, J. Xu, Y. Liu, T. Liu, C. Beaulieu, D. Rubin, S. Napel, Au-
tomatic Annotation of Radiological Observations in Liver CT Images, in:
AMIA Annual Symposium Proceedings, 257–263, 2012.

[18] A. Depeursinge, C. Kurtz, C. Beaulieu, S. Napel, D. Rubin, Predicting
Visual Semantic Descriptive Terms From Radiological Image Data: Pre-
liminary Results With Liver Lesions in CT, IEEE Transactions on Medical
Imaging 33 (8) (2014) 1669–1676.

[19] A. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-based
image retrieval at the end of the early years, IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (12) (2000) 1349 –1380.

[20] B. Caputo, H. Müller, J. Martinez-Gomez, M. Villegas, B. Acar, N. Patri-
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