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Abstract

The forced oscillation technique (FOT) can provide unique and clinically relevant lung function informa-

tion with little cooperation with subjects. However, FOT has higher variability than spirometry, possibly

because strategies for quality control and reducing artifacts in FOT measurements have yet to be stan-

dardized or validated. Many quality control procedures either rely on simple statistical filters or subjective

evaluation by a human operator. In this study, we propose an automated artifact removal approach based

on the resistance against flow profile, applied to complete breaths. We report results obtained from data

recorded from children and adults with and without asthma. Our proposed method has 76% agreement with

a human operator for the adult dataset and 79% for the pediatric dataset. Furthermore, we assessed the

variability of respiratory resistance measured by FOT using within-session variation (wCV), between-session

variation (bCV). In the asthmatic adults test dataset, our method was again similar to that of the manual

operator for wCV (6.5 vs. 6.9%), and significantly improved bCV (8.2 vs. 8.9%). Our combined automated

breath removal approach based on advanced feature extraction offers better or equivalent quality control of

FOT measurements compared to an expert operator and computationally more intensive methods in terms

of accuracy and reducing intra-subject variability.

New & Noteworthy

The forced oscillation technique (FOT) is gaining wider acceptance for clinical testing, however strategies

for quality control of are still highly variable and require a high level of subjectivity. We propose an

automated, complete breath approach for removal of respiratory artifacts from FOT measurements, using

feature extraction and an interquartile range filter. Our approach offers better or equivalent performance

compared to an expert operator, in terms of accuracy and reducing intra-subject variability.
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Introduction1

The forced oscillation technique (FOT) is a lung function test which provides detailed information about2

respiratory mechanics. FOT commonly involves superimposing small external pressure signals on the spon-3

taneous, tidal breathing of the subject (12). Thus, FOT offers an advantage over traditional spirometry4

as it does not require forced maneuvers from the patient, which can be difficult for young children or in5

those with severe airway obstruction. Commercial FOT devices are becoming increasingly available, as are6

validation studies suggesting it has potential clinical utility (1; 20; 16; 3).7

To become accepted as a clinical tool, there are still many barriers to overcome. FOT is known to have8

higher within- and between-test variability than spirometry (26), and it is difficult to disentangle variability9

due to physiological versus technical factors. Although recommendations for FOT measurements suggest10

practical strategies for reducing this variability, there are no specific guidelines as to how FOT quality control11

should be performed (20). It is also suggested that artifacts such as swallowing, glottal closure, leaks around12

the mouthpiece and noseclip should be excluded (20), however these are determined subjectively without13

quantifiable metrics or cut-offs.14

Efforts to improve the quality of FOT measurements have included use of coherence (17) or statistical15

filters (25) and more recently, wavelet-based methods (2) to remove individual outlier points or windows of16

measurement. A complete breath method, where entire breaths rather than individual points associated with17

an artifact are removed, has been shown to be better than point-based statistical filters at reducing within-18

and between-session variability (24); however, artifacts still had to be identified manually by a subjective19

operator. In a previous technical exploratory study, we investigated the use of supervised machine learning20

methods to automatically and objectively detect artifacts, based on extraction of an exhaustive set of features21

from complete breaths (21).22

In this study, we used the knowledge gained from our previous results to propose an automated artifact23

detection method which uses a specific set of features focused on the resistance versus flow (Rrs-flow) profile.24

We evaluated the performance of the method against different artifact removal techniques in pediatric and25

adult datasets, both in terms of agreement against a human operator as well as impact on within- and26

between-session variability.27
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Materials and Methods28

Datasets29

Adults: Details of the adult dataset have been previously published (26). Briefly, 10 healthy volunteers30

(mean(SD) age 32.2 (5.9) years, body mass index 23.2 (1.5)) and 10 patients with asthma (mean(SD) age31

37.5 (11.6) years, body mass index 25.2 (4.6)) were recruited from Royal North Shore Hospital (St. Leonard,32

Australia) and the Woolcock Institute of Medical Research (Glebe, Australia). Subjects performed three33

technically acceptable FOT measurements during normal tidal breathing, wearing a nose clip, with cheeks34

supported and sitting in an upright position, each day over 7 visits within a 10-day period (consecutive days35

excluding weekends). Each subject was measured at the same of day every day to avoid diurnal variation.36

All subjects gave written, informed consent, and the study was approved by the Human Research Ethics37

Committee of Northern Sydney Central Coast Health.38

Children: Data from 14 children were randomly selected from a larger epidemiological study (Ultrafine39

Particles from Traffic Emissions and Childrens Health, UPTECH); details have also been previously pub-40

lished (13,19). Briefly, eight- to eleven-year-old children (mean(SD) age 10.4 (1.1) years, weight 33.56 (6.73)41

kg, height 137.42 (6.47) cm) were recruited from public primary schools in the Brisbane Metropolitan Area42

(23% had doctor diagnosed asthma). FOT testing was performed as part of respiratory function assessment.43

Children were encouraged to breathe in a regular manner, avoid swallowing and maintain a tight mouthpiece44

seal. A series of technically acceptable FOT measurements were made with the child sitting upright, wearing45

a nose clip, with the cheeks and floor of the mouth supported by the child. The study was approved by the46

Queensland University of Technology Human Research Ethic Committee.47

We randomly split each age group into two data sets: one for development and the other for test. Table48

1 describes the development and test sets for children and for adults.49

Measurements:50

Respiratory system impedance (Zrs) was measured at 6, 11 and 19 Hz, using in-house built FOT devices51

conforming to current recommendations (20). Each FOT recording was one minute in total duration.52

Recordings were deemed acceptable by the technician if tidal volume and frequency appeared stable, with53

no obvious leaks and glottic closures from visual inspection of the volume trace. For the adult dataset, flow54

was measured using a screen-type pneumotachograph (R4830B series, flow range 0400 L/min, Hans Rudolph55

Inc., Shawnee, KS, USA) (26; 4). For the pediatric dataset, flow was also measured using a screen type56

pneumotachograph (R3700 series, flow range 0160 L/min, Hans Rudolph Inc, Shawnee, KS, USA) (13; 24).57
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The differential pressure was measured via a ±2.5-cmH2O silicon transducer (Sursense DCAL-4, Honeywell58

Sensing & Control, Golden Valley, MN, USA). Mouth pressure was measured by a similar transducer, with59

a range of ±12.5-cmH2O (Sursense DC005NDC4, Honeywell Sensing & Control, Golden Valley, MN, USA).60

Flow and pressure signals were digitally sampled at 396 Hz and digitally band-pass filtered with a bandwidth61

of ±2 Hz centered around 6, 11 or 19 Hz. From Zrs, the respiratory system resistance (Rrs) and reactance62

(Xrs) were calculated for each frequency of interest separately, at 0.1s intervals as previous described (24)63

to allow a common reporting interval across the frequencies. Incomplete or partial breaths at the beginning64

or end of the recording were removed before any further processing, which helped ensure a balance between65

the inspiratory and expiratory contributions to each breath (24). For our filtering approach, we examined66

common variables obtainable from a FOT measurement, i.e. Rrs, Xrs, volume, pressure, and flow on a67

breath-by-breath basis.68

Preprocessing69

As a first step, we removed breaths containing data points which were physiologically implausible, i.e.70

those containing negative Rrs values (24). We also removed breaths corrupted by noise arising out of either71

nonlinearities in the pressure transducer or harmonics generated by nonlinearities in the respiratory system72

(18). These were defined as breaths having coherence values (see (5) and Appendix), CXY , of pressure and73

flow less than 0.9 (17). CXY and the impedance were calculated over 1/f -second windows (where f = 6,74

11 or 19 Hz), and ensemble-averaged every three windows with 50% overlap. For all three frequencies of75

interest, both the impedance and coherence were reported at intervals of 0.1 s. For the purposes of quality76

control, we primarily report our results for 6 Hz, although we also examined data at 11 and 19 Hz.77

Feature Extraction of Rrs-flow Landmarks78

In our previous work (21), we evaluated a list of potential features to separate respiratory artifacts79

from normal breaths. These include conventional statistical measures (e.g., minima, maxima, ranges, and80

variation) as well as more advanced features in time and frequency domains.81

From a pool of 111 feature candidates including 11 commonly reported in the literature, we separately82

determined the top ten highest ranking candidates based on three different criteria (21). We found that83

”landmark” features used to characterize the shape of the Rrs-flow profile were consistent top performers84

across the methods. Thus, for the current study, feature selection focused on the Rrs-flow profile.85

The within breath Rrs-flow curve provides a visual means of detecting glottal and laryngeal artifacts86

(24). Fig. 1 illustrates how to extract this landmark information from a complete breath. Point B and point87
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Z are two zero flow values for the higher and lower Rrs values. Point A and point D are at the maximum88

and minimum of Flow. Point CR, point CL and point E are at the maximum (right: positive Flow portion89

and left: negative Flow portion) and minimum of Rrs, respectively. Distance features from point Z to all90

other points are also calculated.91

Interquartile range breath filter92

As introduced in our exploratory work (21), a complete breath-based interquartile range filter (IQR93

filter) was proposed to replace the traditional standard deviation filter (e.g., B-3SD (24)). In this report,94

we used an IQR filter at two stages: a breath was marked as an artifact and discarded if its associated (1 )95

Rrs, flow, Xrs, volume values and (2 ) landmark features extracted from the Rrs-flow profile had a value96

greater than a given upper threshold θH or less than a given lower threshold θL.97

An IQR filter is described as follows. Let Q1, Q3, and IQR denote the 25th, 75th percentiles and the98

interquartile range of a variable, respectively. Let nIQR be a number of interquartile intervals of any given99

variable away from its Q1 and Q3 values. The lower threshold θL = Q1 − nIQR × IQR is the limit for100

values that are smaller than nIQR away from Q1; the upper threshold θH = Q3 + nIQR × IQR is the limit101

for values that are greater than nIQR away from Q3. The effect of this filter can be adjusted using nIQR,102

where an increased nIQR reflects a less stringent rejection criterion. Previously, we used one parameter103

nIQR = 1 across both age groups. In this study we investigated the effect of a wide range of nIQR on filter104

performance.105

The IQR filter implemented based on the use of landmark feature sets is termed IQR-Landmark. This106

is in contrast to our previous work using supervised learning to select from all features (21), which we refer107

to here as IQR-SU108

Other filters109

Previous work by Bhatawadekar et al. (2) proposed the use of wavelet decomposition for FOT artifact110

detection and removal. The method was based on the quantification of energy found in specific frequency111

bands and time locations to find differences between curves. We additionally examined the performance of112

this method against our IQR-Landmark filter, by also extracting wavelet coefficients from our FOT recordings113

using Eq. 1 (see Appendix). As per the Bhatawadekar et al. study, we used a three level decomposition114

with the Daubechies method (8) to obtain three coefficient vectors cd1, cd2, cd3 from the pressure signal,115

and then used their three recommended thresholds (i.e. cd12 = 0.004 (cmH2O)2; cd22 = 0.023 (cmH2O)2;116
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cd32 = 0.07 (cmH2O)2 ) to detect artifacts. We also removed two neighbouring points from either side of117

the artifact point.118

As this method was based on exclusion of points rather than complete breaths, we also compared two119

different implementations of the wavelet method: one as previously described (termed Wavelet-point), and120

one in which breaths containing artifacts detected by the wavelet method were excluded (termed Wavelet-121

breath).122

Combined artifact detection123

Finally, we examined the use of a composite detection algorithm, where we combined the use of the124

wavelet-based filter (2), i.e., Wavelet-breath with our IQR-Landmark filter. In preliminary investigations125

(results not shown), we determined that optimum performance was obtained using only the first level126

of derived wavelet coefficient cd1, previously found to be most sensitive and specific to high frequency127

artifacts such as light coughing which are often invisible on the recording. We applied a preset threshold of128

cd12 = 0.004 (cmH2O)2 as per the work of Bhatawadekar et al (2). Thus, only the results for this combined129

algorithm are reported here for comparison, termed IQR-Combined . Specifically, the combined algorithm130

consists of three layers: (1) the pre-processing step, (2) the wavelet decomposition step, and (3) the IQR131

filter using landmark features (Fig. 2). Breaths that failed any threshold checking step were marked as132

artifacts and discarded (with complete-breath approach). The remaining breaths after three layers were133

considered to be clean data (i.e., without artifacts). -134

Performance Measurement135

Five automated filtering approaches are compared against the manual operator (ground truth) in our per-136

formance reports: our novel IQR-Landmark, Wavelet-breath, Wavelet-point, IQR-SU, and IQR-Combined.137

There was one manual operator for the adult (CT) and one for the pediatric (PDR) datasets, respectively;138

both researchers were experienced in analysing FOT waveforms. For comparison, we also report the results139

for raw unfiltered data and the manual operator (where not treated as ground truth). Performance of the140

filters was assessed using a number of measures:141

Accuracy:142

Breaths which were marked as artifacts by both our algorithm and the human operator (ground truth)143

were denoted as True Positives (TP), and breaths labelled as artifacts which did not agree with the ground144

truth we denoted as False Positives (FP). Breaths that the automated filtering approaches failed to label as145
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artifacts but were annotated as such, were defined as False Negatives (FN). When the automated method146

and the annotation agreed a breath was not anomalous, it was counted as a True Negative (TN).147

Sensitivity and specificity were defined as TP
TP+FN and TN

TN+FP , respectively. The accuracy was calculated148

as TP+TN
TP+TN+FP+FN . F1-score (23), which is the harmonic mean of precision and sensitivity, has best value149

at 1 and worst at 0, is calculated as 2TP
(2TP+FP+FN) . We investigated the effect of a wide range of nIQR on150

filter performance using receiver-operator characteristic (ROC) curves151

Agreement:152

Inter-rater reliability between a proposed method and human operators was assessed using unweighted153

Cohen’s Kappa (6).154

Within- and between-session variability:155

Human-based artifact detection suffers heavily from subjective operators and using this as a gold standard156

may not reflect the true performance of a machine-based detection system. Hence, we additionally compared157

the variability of Rrs, via within-session coefficients of variation (wCV ), between-session coefficients of158

variation (bCV ) before and after discarding artifacts that are marked by clinicians versus our detection159

algorithms.160

In the adult dataset, wCV quantified the variability from three recordings performed on the same day161

while bCV was obtained from 7-10 days per subject. In the pediatric dataset, wCV was computed from any162

number of recordings performed on the same day in each subject; it was not possible to compute bCV . For163

each filter, wCV and bCV were compared to the values for manual operator using paired t-tests.164

Acceptability:165

The discard rate is the percentage of filtered data in the total data input. As the first filter layer is166

standard practice (17) for any further data processing, the number of artifacts discarded by this layer is167

reported separately to facilitate comparison. For point-based approaches, the discard rate was reported in168

number of points; for complete-breath approaches, number of breaths is used.169

Results170

Comparisons of agreement and accuracy of filters against manual operator171

In terms of comparison against the manual operator as ground truth, we examined the receiver-operator172

characteristic of the proposed filter across a range of nIQR values (from 0.5 → 3 with 0.5 steps) for both173
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adult and pediatric data. We found that nIQR = 1.5 gave the best performance in adult data, whereas174

nIQR = 2.5 gave the best performance for pediatric data. For adults, the positive rate fell below 0.45 when175

nIQR > 1.5 or the false positive rate increased over 0.3 when nIQR < 1.5. For children, when nIQR > 2176

the positive rate fell below 0.75 while nIQR < 2 the false positive rate increased over 0.4. This agreed with177

the compared Rrs-flow profile between children and adults using the human removal (Fig. 3). Thus, we178

determined to use age-group oriented nIQR to achieve the best performance (i.e., 2 for children and 1.5 for179

adults).180

With the chosen nIQR values, the combined method achieved 76% (adult) and 79% (pediatric) agreement181

with the manual operator. The performance metrics for the filters studied are shown in Table 2. Note that182

since the manual operator labelled acceptability in terms of breaths and not points, metrics were not available183

for the wavelet-point method.184

Comparisons of variability and acceptability between filters185

As mentioned, the agreement might not reflect the true performance of a test method. For example,186

Fig. 4 illustrates examples of artifacts in a recording that were missed by the operator but detected by our187

proposed method, i.e. contribution of the second and/or the third layer. The inter-rater comparison was188

observed to be poor, with Cohen’s kappa = 0.473 (95% CI 0.411 to 0.534).189

Table 3 and 5 show the variability of filtered Rrs profiles across test methods in comparison with the190

unfiltered data and filtering by a manual operator, for the development and test datasets, respectively. Of191

note, in the asthmatic adults test dataset, our proposed automated method yielded similar variability to192

that of the manual operator for wCV (6.5 vs 6.9%), and significantly improved bCV (8.2% vs 8.9%). In the193

pediatric test dataset, the wCV of our method was again similar to the manual operator (8.2% compared194

to 8.6%). The percentage of breaths that were removed by the first preprocessing layer from raw data sets195

were only about 1% (pediatric) and 2% (adult) (Table 3). The remaining breaths that were kept by our196

method were 69% (pediatric) and 73% (adult) of the total raw input (the manual method kept about 77%197

in both cases). While the Wavelet-point method kept 99% (pediatric) and 97% (adult) of total raw data198

points, Wavelet-breath only kept 78% (pediatric) and 98% (adult) of raw breaths. Without the wavelet layer,199

IQR-Landmark produced 74% (pediatric) and 81% (adult).200

In the adult test dataset, i.e., those with asthma, the above performance was maintained (Table 4 and201

Table 5). Our method kept 66% of breaths compared with 69% of the human method. The accuracy of202

children test set was 89.1%, higher than 82.7% of the development performance.203
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Effect of combined filter at 11 and 19 Hz204

We also examined the performance of the proposed combined filter when applied to FOT data at 11 and205

19 Hz, in the two adult (development and test) datasets. In particular, if a breath was flagged as an artifact206

at 6 Hz, we looked at the proportion of breaths that were also flagged at 11 and 19 Hz, respectively. We207

found that for both datasets, out of the breaths identified as artifacts at 6 Hz, 85% were also classified as208

artifact at 11 Hz, and 83% were also classified as artifact at 19 Hz (true positives). In contrast, out of those209

breaths not considered artifacts at 6 Hz, only 15% was classified as artifact at 11 Hz, and 17% at 19 Hz (false210

negatives). Concordance between 6 and 11 Hz was moderate with kappa = 0.501 for the healthy dataset211

and 0.472 for the asthma dataset, and between 6 and 19 Hz was kappa = 0.464 for the healthy dataset and212

0.454 for the asthma dataset.213

Discussion214

Summary of results215

In this work, we propose a new technique for respiratory artifact removal, based on a novel scheme which216

involves extracting landmark features from the resistance versus flow profile and use of an interquartile range217

filter. We found that partly combining the method with the previously published wavelet detection method218

resulted in slightly higher accuracies and lower variability particularly in children.219

We tested the different filtering methods using real data collected from a variety of subjects: children,220

healthy and asthmatic adults. A high degree of agreement between our method and the manual work221

was observed and several breaths containing artifacts missed by the manual operator were detected by our222

method. Possible reasons for human error include subjectivity in determining outlying Rrs vs flow loops, and223

the superimposition of multiple breaths in the software display potentially obscuring problematic breaths.224

Finally, within- and between-session variability was used to assess the performance of each filtering method225

in the absence of ground truth, i.e. without assuming the manual operator as gold standard. The combined226

method resulted in similar or lower variabilities compared with the operator, with a slightly higher exclusion227

rate. Though using the IQR-Landmark scheme produced a similar variation, a much lower exclusion rate228

than the operator implies that it may have missed several artifacts that were recognized by the human.229

Comparison with other methods230

In the past, quality control of forced oscillation data has often been done on the basis of measures such231

as coherence, i.e. the degree of correlation between the oscillatory flow and pressure waves, where coherence232
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values less than 0.95 were typically excluded (17). However, this has known limitations: coherence is highly233

dependent on windowing and other signal processing settings (17), is potentially biased in the presence of234

nonlinearities (18), and has limited meaning when assessing the time course of impedance using single sliding235

windows (1). Furthermore both the literature (28) and anecdotal evidence suggests it is often much reduced236

in disease, particularly at low frequencies.237

We have previously proposed using a complete breath approach to identify and exclude respiratory ar-238

tifacts (24), in contrast to the more typical individual data point rejection using statistical filters based239

on number of standard deviations from the mean Rrs or Xrs value (25). Comparing to either 3SD or 5SD240

filtering, we found thata complete breath-based approach resulted in lower within- and between-session vari-241

ability in children. We also proposed removal of transient artifacts based on the distinct deviations observed242

in the oscillatory flow and admittance signals, and in the Rrs-flow profile (24). Specifically, mouthpiece243

leak artifacts manifest as a marked increase in oscillatory flow and a pronounced spike in the magnitude of244

admittance. Other artifacts often contain depressions or gaps in the oscillatory flow signal but are best iden-245

tified by examining the Rrs-Flow profile (e.g. spikes in Rrs at or near zero flow) (22,11,24). However, these246

observations were made subjectively, with no quantitative criteria or threshold to determine exclusion. The247

results of the present study represent a first step towards more objective and automated criteria for quality248

control of FOT measurements, based on a complete breath strategy. It employed an intuitive approach to249

detecting anomalies from the Rrs-flow profile, for the first time using landmark features to identify outliers.250

The recent use of wavelet decomposition applied to the pressure profile of the breath (2) was effective251

at excluding light coughing, swallowing and vocalization artifacts. Although the wavelet method had high252

performance in sensitivity and specificity (over 90%), its evaluation was limited to simulated artifacts by253

trained subjects, and its performance on real world data was unknown. In this study, using retrospective254

clinical FOT data, we found that partially incorporating the wavelet approach into our proposed algorithm,255

particularly that component which detects artifacts invisible to the operator from the FOT recording,256

resulted in superior accuracies and similar variabilities compared to either method alone.257

In previous exploratory work (21), we utilized several supervised learning selection algorithms to evaluate258

different features suitable for use with IQR filters. Using completely automated selection algorithms, similar259

variability was observed compared to a manual operator. The method was completely automated in that260

it required no a priori input for the nIQR parameter, allowing it to operate independently of the target261

population characteristics, especially age. However, this came at a high computational cost due to the262

learning algorithms. The method also required a preset number of top ranking candidate features (e.g.,263
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10). Our current proposed method is far less computationally intensive, and uses only features which are264

intuitive and potentially physiologically meaningful as it is based on the Rrs-flow profile. We propose that265

the nIQR be customized to the target population of interest, and report the optimum nIQR for an adult and266

pediatric test group.267

Significance of findings268

The improvements in within- and between-variability offered by the quality control methods examined269

in this study may be small compared to the natural physiological variability measured by FOT. However,270

they become important when the variability is a signal of interest that can provide insight into pathological271

states, via the use of simple and advanced analyses of variability (26; 22; 14) or the emerging interest in272

the flow-independent variability between end-inspiratory and end-expiratory resistance (7). In such cases,273

the sensitivities of such analyses can be refined by good quality control methods, to enhance discriminative274

power. For example, in our dataset, we see an improvement in wCV of approximately 0.5%. This may275

be small compared to the natural physiological variability of FOT (as deduced from the manually filtered276

wCV). However, it becomes significant when compared to the difference in wCV between health and asthma277

of approximately 2%, and would dramatically improve the ability to discriminate between the groups.278

More importantly, we have shown that it is possible to implement an objective, automated method of279

quality control which performs just as well or slightly better than an expert manual operator. This is an280

advancement on our previous approach (24) showing significantly better performance than simple filtering281

methods but was still a subjective method relying on an expert manual operator.282

Limitations283

Most commercial FOT systems employ multi-frequency signals. We have focused our quality control284

approach on 6 Hz, as it or 5 Hz is the most common frequency of primary interest reported in the literature.285

We did not evaluate how the proposed filter compared against manual quality control at other frequencies,286

as we would recommend always taking the quality of the primary frequency of interest into account. When287

we compared the performance of the filter at 11 and 19 Hz to 6 Hz, we found that breaths were more likely288

to be excluded at 6 Hz than at 11 and 19 Hz. There were proportionally fewer breaths excluded at 11 and289

19 Hz that were not already excluded at 6 Hz. Thus, there was moderate concordance between 6 Hz and290

the higher frequencies. In practice, impedance at lower frequencies are more susceptible to the effects of291

breathing, however the effects of glottal interference may tend to manifest at higher frequencies. The higher292

sensitivity to detect artifacts at 6 Hz could be due to the observation that resistance spikes at 11 and 19293
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Hz were generally smaller (and perhaps more difficult to detect) than at 6 Hz, or simply the fact that the294

algorithm was optimised using data from 6 Hz.295

In terms of applicability, the test datasets we examined exhibited a mild to medium range of airway296

obstruction, ranging in Rrs from 1.7 to 8 cmH2OsL
−1. Thus our method will need to be tested for ap-297

plicability across a wide range of obstruction, e.g., severely obstructed patients or during an exacerbation.298

However, we note that our performance metrics remained mostly high (approval rate ≥ 75%) regardless of299

median Rrs in both the children and adult datasets. There was also a low correlation between approval rate300

and Rrs as reported previously (21).301

In our previous work (21), we found that features associated with Xrs did not rank highly compared to302

Rrs in predicting manual operator decisions in the same datasets. Minimum and range of Xrs were within303

the top 10 ranking features across all those examined, and outlying values were taken into consideration in304

the combined filter (Figure 2, Layer 2), but we did not examine detailed landmark features in e.g. the Xrs305

versus flow or volume profiles. However, it is worth noting that these results may only be relevant to the306

healthy and asthma populations we examined.307

Further work will also be needed to determine how our method will perform in other diseases, e.g. acute308

respiratory distress syndrome (10; 15), or chronic obstructive pulmonary disease, where abnormalities in309

Xrs may be more important than Rrs, but may also be confounded by expiratory flow limitation (11).310

Finally, we only relied on one manual operator for each dataset and did not examine inter-rater variability.311

This may have underestimated within- and between-session variability for manual exclusion, as well as the312

differences with and between the filters being tested.313

Conclusions314

Lack of standardization in FOT has contributed to diversity in FOT setups, signal processing and quality315

control approaches across manufacturers and laboratories. This has been a barrier to its adoption into316

widespread clinical usage, despite decades of studies showing promising physiological and clinical relevance.317

Our work shows that the resistance versus flow profile is a useful target for automated exclusion of artifacts on318

a breath-by-breath basis. The ability to remove common artifacts using objective and automatable criteria319

is an important step towards overcoming this barrier, as these approaches can be eventually incorporated320

into commercial software to guide the user and minimize inter-operator variability. These approaches are321

also especially desirable in emerging applications of FOT such as in epidemiological field testing (13) and322

home monitoring (9; 27).323
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Appendix and Equations324

Wavelet decomposition coefficients (8) and spectral coherence (5) was calculated as below.325

Wavelet decomposition: Let s(t) be a curve which can be presented by coefficients C (a, b)(1).326

C (a, b) =
1√
a

+∞∫
−∞

s(t)ψa,b(t)dt (1)

where ψa,b (t) = ψ
(
t−b
a

)
is an expanded or contracted and shifted version of a unique wavelet function ψ(t)327

a and b are the scale and the time localization, respectively.328

In this work, we implemented a three level decomposition with the Daubechies method (8) to obtain329

cd1, cd2, cd3 using Matlab packages (The MathWorks Inc., Natick, MA, 2000). The Daubechies wavelets330

are orthogonal wavelets defining a discrete wavelet transform (DWT).331

Spectral coherence: Let CXY be the spectral coherence between signals X and Y . CXY is defined by332

the Welch method (5) as in Eq. 2.333

CXY (ω) =
PXY (ω)√

PXX(ω).PY Y (ω)
(2)

where ω is frequency, PXX(ω) is the power spectrum of signal x, PY Y (ω) is the power spectrum of signal y,334

and PXY (ω) is the cross-power spectrum for signals x and y. When PXX(ω) = 0 or PY Y (ω) = 0, then also335

PXY (ω) = 0 and we assume that CXY (ω) is zero.To estimate power and cross spectra, let Fx(ω) and Fx(ω),336

denote the Fourier transform and its conjugate of signal x, respectively, i.e. Fx(ω) =
+∞∫
−∞

x(t).e−jωtdt. The337

power spectrum is then: PXX(ω) = Fx(ω).Fx(ω); PY Y (ω) = Fy(ω).Fy(ω); and PXY (ω) = Fx(ω).Fy(ω).338
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Figure Legends452

Figure 1. 7 points proposed to determine thresholdary landmarks (dotted) for a Rrs against Flow453

curve from one breath of a child. Features extracted by landmarks for this breath are Euclidean dis-454

tances between points (dotted).455

456

Figure 2. Combined Respiratory artifact detection scheme. Rrs is resistance values of input breaths.457

Cxy is the spectral coherence between pressure and flow values of breaths. Cd21 is the squared first458

level wavelet decomposition of pressure values. R,F,X, V are resistance, flow, reactance, volume val-459

ues. R,F,X, V are checked if in their normal range. Fea is the advanced feature set extracted (from460

the relationship between Rrs and Flow values) is checked with their threshold ranges.461

462

Figure 3. Example of Rrs-flow profile of a measurement. (a): adult data. (b): children data. Solid463

lines are accepted breaths and dotted lines are discarded data by manual operator.464

465

Figure 4. Example artifacts in a recording that were missed by the operator but detected by Layer466

2 (square markers) and/or Layer 3 (diamond markers). The breath in bold indicates an artifact that467

was detected and excluded by the operator.468

469
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Tables470

Table 1: Data Sets used in this work.

Adults Children
Characteristics Development Test Development Test
Dataset source Timmins et al (26) Timmins et al (26) Ezz et al (13) Ezz et al (13)
Collection Site Sydney, NSW Sydney, NSW Brisbane, QLD Brisbane, QLD
Diagnosis healthy asthmatics healthy/ asthmatics healthy/ asthmatics
No. of subjects 9 10 9 5
No. of measurements 261 285 69 31
No. of breaths 3067 3947 1110 580

Table 2: Comparisons of filters against the manual operator during development. IQR-Landmark and IQR-SU are our works
related to our current proposed, IQR-Combined. Others are the existing. Positives are artifacts. True positive breaths are
breaths rejected by both machine-based and manual removal. F1-score is the harmonic mean of precision and sensitivity.

Healthy Adults Children

Method Accuracya F1a Sensitivitya Specificitya Accuracya F1a Sensitivitya Specificitya

IQR-Landmarkb 0.753 0.545 0.640 0.787 0.693 0.525 0.842 0.655

Wavelet-breathc (2) 0.584 0.335 0.453 0.623 0.431 0.341 0.730 0.356

IQR-SU d (21) 0.763 0.571 0.683 0.787 0.731 0.553 0.824 0.708

IQR-Combinede 0.781 0.569 0.626 0.828 0.827 0.632 0.734 0.851

a Removals by a specialist is considered ground truth.
b A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
c A complete breath rejection approach using the wavelet coefficient thresholding detecion.
d A single filter approach with features selected by a supervised learning technique (21) and nIQR = 1 for both age groups.
e A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
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Table 3: Comparison of filtered Rrs profiles between filters during development. IQR-Landmark and IQR-SU are our works
related to our current proposed, IQR-Combined. Others are the existing. wCV and bCV are in %. P values are from paired
t-tests (two-tailed). %out is the percentage of remaining breaths (against the total raw input, unit in %) after being filtered by
methods except for Wavelet-point which is in percentage of the raw data points. %discarded-by-preprocessing is the percentage

of artifacts that were removed in the preprocessing step (a common step for all test filters).

Healthy Adults Children

Method wCV P-value
wCVa

bCV P-value
bCVa

%out wCV P-value
wCVa

%out

Unfiltered (raw data) 5.25 - 6.69 - 100.0 13.62 - 100.0

Manual (reference) 5.14 - 6.31 - 76.9 11.66 - 77.2

IQR-Landmarkb 4.56 0.08 5.76 0.18 80.6 12.69 0.57 74.5

Wavelet-point (2) 5.43 0.34 6.84 0.46 97.1 13.96 0.30 98.9

Wavelet-breathc 5.93 0.20 7.82 0.34 98 11.9 0.85 77.8

IQR-SU d 4.69 0.20 5.91 0.05 67.8 12.25 0.80 60.0

IQR-Combinede (proposed) 4.57 0.11 5.75 0.17 72.8 13.27 0.32 69.6

%discarded-by-preprocessing 1.9 2.6

a compared to Manual operator, significant if P < 0.05.
b A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
c A complete breath rejection approach using the wavelet coefficient thresholding detecion by the research group (2).
d A single filter approach with features selected by a supervised learning technique (21) and nIQR = 1 for both age groups.
e A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).

Table 4: Comparisons of filters against the manual operator with out-of-sample data. IQR-Landmark and IQR-SU are our
works related to our current proposed, IQR-Combined. Others are the existing. Positives are artifacts. True positive breaths
are breaths rejected by both machine-based and manual removal. F1-score is the harmonic mean of precision and sensitivity.

Asthma Adults Children

Method Accuracya F1a Sensitivitya Specificitya Accuracya F1a Sensitivitya Specificitya

IQR-Landmarkb 0.719 0.610 0.715 0.720 0.738 0.398 0.848 0.725

Wavelet-breathc (2) 0.596 0.435 0.506 0.636 0.369 0.179 0.674 0.334

IQR-SU d (21) 0.736 0.606 0.661 0.769 0.747 0.412 0.870 0.733

IQR-Combinede 0.731 0.609 0.683 0.752 0.891 0.588 0.761 0.906

a Removals by a specialist is considered ground truth.
b A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
c A complete breath rejection approach using the wavelet coefficient thresholding detecion.
d A single filter approach with features selected by a supervised learning technique (21) and nIQR = 1 for both age groups.
e A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).

22



Table 5: Comparisons between filters during out-of-sample tests using the Rrs profile. IQR-Landmark and IQR-SU are our
works related to our current proposed, IQR-Combined. Others are the existing. wCV and bCV are in %. P values are from
paired t-tests (two-tailed). %out is the percentage of remaining breaths (against the total raw input, unit in %) after being
filtered by methods except for Wavelet-point which is in percentage of the raw data points. %discarded-by-preprocessing is

the percentage of artifacts that were removed in the preprocessing step (a common step for all test filters).

Asthma Adults Children

Method wCV P-value
wCVa

bCV P-value
bCVa

%out wCV P-value
wCVa

%out

Unfiltered (raw data) 6.25 - 7.95 - 100.0 8.41 - 100.0

Manual (reference) 6.86 - 8.86 - 68.9 8.55 - 89.8

IQR-Landmarkb 6.52 0.13 8.22 0.05 80.6 8.30 0.66 74.5

Wavelet-point (2) 6.64 0.57 8.15 0.09 98.7 9.06 0.21 79.1

Wavelet-breathc 7.51 0.37 8.35 0.24 97.9 10.12 0.23 33.3

IQR-SU d 7.93 0.26 6.68 0.05 63.7 8.62 0.86 67.1

IQR-Combinede(proposed) 6.46 0.12 8.18 0.03 65.6 8.22 0.62 66.9

%discarded-by-preprocessing 2.5 0.9

a compared to Manual operator, significant if P < 0.05.
b A single filter approach with landmark features and nIQR = 1.5 for adults and 2.5 for children (where relevant).
c A complete breath rejection approach using the wavelet coefficient thresholding detecion by the research group (2).
d A single filter approach with features selected by a supervised learning technique (21) and nIQR = 1 for both age groups.
e A multi-filter approach (comprising a wavelet and IQR-Landmark) with nIQR = 1.5 (adults) or 2.5 (children).
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