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1. INTRODUCTION

Machine learning (ML) techniques for time-series analysis and forecasting have

been extensively studied in a number of application domains including financial

(Hall, 1994; Cheng et al., 1996; Tay and Cao, 2001; Huang et al., 2004) and en-

ergy markets (Mohandes, 2002; Liang and Noore, 2004; Espinoza et al., 2005) (see

Sapankevych and Sankar (2009); Krollner et al. (2010) for a comprehensive list of

applications). The inherent non-linear and non-stationary nature of financial time-

series makes ML techniques more suitable for analysis than traditional model-based

approaches (Brockwell and Davis, 2002; Franke et al., 2008; Tsay, 2005; Lai and

Xing, 2008). The performance of ML techniques depends crucially on a suitable

choice of feature vectors to predict the target signal (Cheng et al., 1996; Tay and Cao,

2001). In most cases these are selected by experienced users and domain experts.

The traditional approach is to use standard technical indicators and/or external

economic factors as input features to ML algorithms. Technical indicators are for-

mulae developed from models for price and volume that identify patterns and market

trends in financial markets (Schabacker, 1930). Kim (2003); Lu et al. (2009); Huang

and Tsai (2009) used these indicators as features in the support vector machine

(SVM) (Vapnik, 1999; Cortes and Vapnik, 1995) to forecast financial time-series.

Technical indicators have also been used as features in neural networks (Kim, 2003;

Kamruzzaman and Sarker, 2003; Zapranis, 2006). Lendasse et al. (2000); Ince and

Trafalis (2004) applied non-linear dimension reduction to the standard technical

indicators and used the projected indicators as features in the SVM and neural net-
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works to forecast stock prices. More recent works include Kim et al. (2006); Shen

et al. (2011); Ritanjali et al. (2009).

The aforementioned works were empirical studies that identify a subset of the

technical indicators which improved forecasts, the selection of the technical indi-

cators and their parameters being ad-hoc. It would therefore be useful to have a

framework that can automatically generate useful features by systematically guiding

the generation of a pool of candidate features that have a meaningful interpretation.

A general framework for function-based feature generation using context-free

grammars (CFG) was first proposed by Markovitch and Rosenstein (2002). Such

grammars are used in linguistics to describe sentence structure and words of a nat-

ural language and in computer science to describe the structure of programming

languages (Sipser, 1997). Unfortunately, the technique is only suitable for problems

where the features are apparent from the problem description. Eads et al. (2005)

and Pachet and Roy (2009) addressed supervised time-series classification using

standard genetic programming to discover a set of fundamental signal processing

operations via a grammatical structure. Both these works conclude that conventional

classifiers trained using raw data as features can be outperformed by training the

same classifiers with grammar generated features. Standard genetic programming

was also used by Ritthof et al. (2002) to combine feature generation and feature

selection and applied to the interpretation of chromatography time-series. Ritthof

et al. used arithmetic operators in their grammar to expand the feature space while

Eads et al. extracted time-series information using operators such as the mean, delay,

derivative, integral, etc. The genetic programming approach by Guo et al. (2005)

used a set of mathematical transformation operators, (e.g. sin, cos, +, -, sqrt, etc) to
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produce features of the raw vibration signals from a rotating machine for fault clas-

sification. A similar approach has been applied to breast cancer diagnosis (Hong and

Nandi, 2005). Both works reported improved classification accuracies. Islamaj et al.

(2006) proposed a feature generation algorithm for splice-site prediction in genomics

and reported a 6% improvement compared to the state-of-the-art approaches. Kraw-

iec and Bhanu (2005) used a co-evolutionary feature generation approach where a

multiple population was evolved simultaneously. Operators applicable to images,

e.g. filters, image norms, scalar operators etc. were defined and the best operator

sequences, i.e. processing steps embedded in chromosomes, were used for synthetic

aperture radar (SAR) image recognition. The approach was shown to be robust under

different operating conditions.

In this paper we propose, for the first time, a CFG for forecasting stock market

data. Our proposed approach generates interpretable indicators (features) that con-

sistently improve forecasts compared to using standard technical indicators. We also

identify potential candidates for new technical indicators. Our approach is flexible

in that (i) any ML technique can be used for predictions (ii) users can easily control

the number of features generated without requiring any expertise, while experienced

users can adjust the grammar to incorporate domain specific knowledge.

We demonstrate our proposed approach using standard ML tools for regression

to forecast the closing price of major world stock market indices.

This paper is organized as follows. Section 2 provides some background on stan-

dard technical indicators for financial time-series and gives a brief overview of the

CFG. Section 3 presents the main part of our work on developing grammar families

to generate features. Implementation issues are described in detail. An empirical
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study is provided in Section 4. The paper is concluded with some final remarks in

Section 5.

Notation and Acronyms The subscript k denotes the current time. O, H, L

and C are the opening, highest, lowest and closing prices respectively and V is the

traded volume for the day. The typical (average) price M = (H+L+C)/3. Let ∆Pk ≡

Pk − Pk−1, then the upward and downward price changes are Uk = max(0,∆Ck)

and Dk = min(0,∆Ck) respectively. The money flow F = M × V and the posi-

tive and negative flows are given by F+
k = max(0,∆Fk) and F−k = min(0,∆Fk)

respectively. σ and σ̄ are the standard and mean deviations of the typical price M.

Grammars are parameterised by lag, l, and look-back window size n.

AORD ≡ All Ordinaries, FTSE ≡ FTSE-100 Index, GDAXI ≡ DAX Index,

GSPC ≡ S&P-500 Standard and Poor’s Index, HSI ≡ Hang Seng Index, NDX ≡

NASDAQ-100, N225 ≡ NIKKEI 225, SSEC ≡ Shanghai Stock Exchange Compos-

ite, SSMI ≡ Swiss Market Index, TWII ≡ Taiwan Weighted Index.

2. BACKGROUND

2.1. Technical Indicators

Technical indicators are formulae that identify patterns and market trends in

financial markets developed from models for price and volume (Schabacker, 1930).

Technical indicators can be broadly classified as trend, momentum, volatility and

volume indicators (Edwards et al., 2007). A trend analysis studies price charts using

the moving average filters which give smooth price estimates and identifies overall

trend patterns. The exponential moving average (EMA), simple moving average
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(SMA) and weighted moving average (WMA) filters are some of the standard trend

indicators. Momentum measures the variation of price at a given time. Momentum

indicators identify overbought and oversold positions and start of new trends. Rate

of convergence (ROC), relative strength index (RSI) and average directional index

(ADX) are some commonly used momentum indicators. Volatility indicators like

Bollinger bands identify the uncertainty in the market via statistical variance of price

movements. Volume indicators identify the volumes of trade that have the potential

to cause market movements. The money flow index (MFI) is one such example.

Some standard technical indicators are shown in Tables 1, 2. Table 1 summarizes

some well-known trend, volatility and volume indicators with typical parameter

values while Table 2 summarizes momentum indicators. Table 3 summarizes 12

studies that use technical indicators as regressors in standard ML tools.

2.2. Context-free Grammar

A context-free grammar (CFG) is a simple mechanism to generate patterns and

strings using hierarchically organized production rules. Using the Backus-Naur form

(BNF), a formal notation for context-free grammars, a CFG can be described by the

tuple (T ,N ,R,S) where T is a set of terminal symbols and N is a set of non-

terminal symbols with N ∩ T = ∅. The non-terminal symbols in N and terminal

symbols in T are the lexical elements used in specifying the production rules R of

a CFG. A non-terminal symbol is one that can be replaced by other non-terminal

and/or terminal symbols. Terminal symbols are literal values that symbols in N can

take. A terminal symbol cannot be altered by the grammar rules R . R is a set of

relations (also referred to as production rules) in the form of R → α with R ∈ N ,
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α ∈ (N ∪ T ). S is the start symbol S ∈ N . If the grammar rules are defined as

R = {x → xa, x → ax}, a is a terminal symbol since no rule exists to change it

whereas x is a non-terminal symbol. A language is context-free if all of its elements

are generated based on a context-free grammar. It is well-known that most program-

ming languages are modelled using context-free grammars and that compilers are

developed based on context-free languages. If S is the starting symbol and we define

a context-free grammar, T = {a, b}, N = {S} and R = {S → aSb,S → ab},

L = {anbn|n ∈ Z+} is a context-free language.

2.3. Feature Selection

Feature selection (FS) is the process of choosing a subset of features that im-

proves the performance of the ML technique. Formally, for N data samples with

M features in each data sample, the FS problem is to find from the M -dimensional

observation space RM , a subspace of m features Rm that best predict the target. This

is achieved by removing irrelevant, redundant, and noisy features from the set.

Because the total number of subspaces is 2M , in general finding an optimal

feature subset is intractable (Kohavi and John, 1997). Many problems related to FS

have been shown to be NP-hard (Huan and Lei, 2005). FS strategies are essentially

twofold; (i) ranking features according to some criterion and (ii) collectively choos-

ing a feature subset (Guyon, 2003). Feature ranking assigns a weight to each feature

and feature subset selection evaluates different feature combinations.

A filter model uses intrinsic characteristics of the data for feature ranking. Com-

monly used critera are the information gain, Pearson’s correlation, minimum-redundancy-
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maximum-relevance (mRMR) (Ding and Peng, 2003) and the Relief algorithm (Robnik-

Šikonja and Kononenko, 2003).

The mRMR method is based on mutual information (Hanchuan et al., 2005).

Maximum relevance is assessed where S is a set of M features such that |S| = M

and I(xi, c) is the mutual information between feature xi and target c. Relevance is

represented via the formula

D(S, c) =
1

|S|
∑
xi∈S

I(xi, c),

and redundancy using

R(S) =
1

|S|2
∑

xi,xj∈S

I(xi, xj).

The mRMR method is

max
S

Φ(S), Φ(S) = D(S)−R(S).

Incremental search methods are used to find a near-optimal feature subset by max-

imising Φ(·).

2.3.1. Integer Genetic Algorithms. For large dimensional feature spaces, a filter

model can be first applied to reduce the dimensionality in a greedy manner. Sub-

sequently, a wrapper-based feature selection technique which considers interactions

between features in detail can be used.

Integer genetic algorithms (GA) operate on n-tuples of integer strings Ii. The n-

tuple is termed the population, and the integers represent genes in the chromosomes.

Each chromosome is a candidate solution for the formalized problem. The low scor-

ing chromosomes are discarded from the population and replaced with new chromo-

somes (children). The probability for a population Ii to be selected for recombination
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is proportional to the relative fitness score given by, ps = φ(Ii)/
n∑
j=0

φ(Ij), where φ(.)

is the fitness function to be optimised.

GAs have been used as a wrapper technique thus introducing a search mechanism

to avoid enumerating the entire space. A simple approach is to encode features in

the chromosome, e.g. the chromosome 01001000 could mean that the 2nd and 5th

features are selected (Yang and Honavar, 1998; Il-Seok Oh et al., 2004). Grammar-

based GA optimization can be facilitated using our open source gramEvol pack-

age (Noorian et al., 2015) which generalises the technique described in this paper.

3. METHODOLOGY

3.1. Feature generation using CFG

We define hierarchical grammar structures with different layers to guide the

feature generation flow. The layered organization of operators that we use to generate

features is shown in Table 4. At time k, the base layer consists of the m observed

variables x(1)
k , . . . , x

(m)
k and the p derived variables f (1)

k , . . . , f
(p)
k . In the context of

our application O, H, L, C and V are the observed variables. The derived variables

are M, D, U, H+, L−, F± and i± which are terms that appear in the formulae for

the technical indicators in Tables 1, 2. In the absence of any information other than

the target (closing price C) history, the proposed methodology will only involve the

derived variables in the base layer.

The transformation layer comprises the base and running operators defined in

Table 5. The base operators are simple operators such as the first difference and the

absolute value. The running operators compute values using a moving window. For
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example, max(x,n) will calculate the maximum value of the past n days for each-

point in the time-series, i.e. max(Ck, n) = max(Ck, Ck−1, . . . Ck−n). Similarly,

sd(x,n)will calculate moving standard deviations for each point of the time-series

using a look-back window of size n. The combinatorial operators fuse information

across variables to produce more features which are passed to the user defined layers.

Domain transformations (e.g. wavelets, Fourier) can also be useful for construct-

ing better features. For example, the wavelet transformation has been used for multi-

resolution analysis of stock data to capture information on different time-scales that

is not obvious from the original time-series (Huang and Wu, 2008).

3.2. Generating Technical Indicators using Grammar Families

A CFG can be used to organize production rules to guide feature generation

while maintaining variable compatibility. The base layer consists of inhomogeneous

quantities such as price, time and volume. By using properly organized CFG families

we are able to maintain compatibility by combining them in a meaningful way. The

use of grammar families instead of a single grammar can minimize the generation

of less informative features. Unlike genetic programming (Guo et al., 2005), CFG

facilitates visualization of the feature generation flow which helps to monitor the

generated features. The operators defined in Table 5 suffice to generate rich features

with the technical indicators summarized in Tables 1, 2 as particular cases. The 7

grammar families used in this work are given in Tables 6-12. The grammars use

the notation n for look-back window size and l for lag. For example, the running

operator sd applied to the closing price with a look-back window size of n is

denoted as sd(C,n). This operation produces different features for different look-
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back window sizes of n. Similarly, the lagged closing price is denoted as lag(C,l)

which lags the closing price by l days. If l=1 this means we use the closing price of

the previous day (Ck−1) as a feature to predict the closing price of the next (Ck+1).

Recall that a CFG can be described by (T ,N ,R,S). The production rules R

for grammar family 1 are organized into 3 groups. Group 1 has 5 rules (1.a)-(1.e),

group 2 has 2 rules (2.a), (2.b) and so on. Each production rule has a head (left hand

side), a non-terminal symbol in N , that is assigned by the string of symbols in the

body (right hand side). Multiple production rules in the same group are delimited by

the pipe “|”. For grammar family 1, we have 3 non-terminal symbols denoted in the

production rules by <·>, namely <L1>, <L2> and <L3>.

Features are generated by invoking the production rules sequentially. The gener-

ated features are mapped to the different layers in Table 4. Fig. 1 shows the steps to

generate the technical indicator A/D oscillator. The start symbol for grammar family

1 is <L3>. By invoking rule (1.b) on <L3>, the intermediate non-terminal expression

(<L2>)÷ (<L2>) is produced. Since there are 2 individual non-terminal elements in

this intermediate expression, the leftmost non-terminal is always chosen (indicated

by the circle around it). With the closing price C lagged by l = 1 (Ck−1) and the

lowest price L lagged by l = 0 (Lk) we obtain the formula for the A/D oscillator.

Fig. 2 illustrates the generation of the Disparity indicator using the grammar

family 2. With the closing price C lagged by l = 0 (Ck) in both terms we obtain the

Disparity. Other technical indicators are generated in a similar fashion.

The CFG based framework is flexible in that: (i) the number of grammar families

and the organization of the production rules can be adapted. (ii) The user is able to

design a sufficiently large grammar to capture as much information as possible with
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a manageable feature space. (iii) The user can incorporate domain knowledge by

choosing appropriate derived variables and production rules.

All the technical indicators in Tables 1 and 2 can be obtained from the production

rules of the 7 grammar families, this being detailed in Table 13.

Pseudocode for enumeration of the symbolic features is given in Algorithm 1.

Algorithm 1 Language Parsing
function LANGUAGE PARSER(nt1, nt2) . inputs are non-terminals of grammar

exprList = {}
n← Number of production rules of nt1
for i in 1:n do

currExpr ← RHS(nt1[i]) . Right hand side of the production rule
S = {RHS(nt2[1]), RHS(nt2[2]), . . . }
exprList = {exprList, AllPossibleExpressions(S, currExpr)}

return exprList

3.3. Pruning Strategies

Carefully designing the grammar structure using the grammar families helps

to keep the number of features generated within a manageable size. Some of the

features are parametrized by a window of size n and lag l. Clearly, the number of

different features explode with increasing the number of values that n and l can take.

Simple pruning procedures can ensure the feature generation is tractable and only

informative features are generated in a systematic way. These are outlined below.

(i) Limiting the number of production rules at each step avoids explosion of

the feature space. Grammar families were designed such that each family generates

features from a class of indicators.

(ii) Separate production rules for numerator and denominator terms in fractional
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forms can be used. This helps to reduce all possible permutations using a single

production rule, e.g. in grammar families 3 and 4.

(iii) Avoiding invalid operations in a production rule avoids generating meaning-

less features, e.g. adding price to volume.

(iv) For feature expressions with many possible combinations, only the N best

numerical features can be selected based on an appropriate criterion e.g. mRMR.

(v) Features that exhibit little variation can be dropped.

Pseudocode for generation of numerical features is given in Algorithm 2.

Algorithm 2 Feature Expression Generation
function BUILD FEATURE EXPRESSIONS(n[], l[]) . n = window-sizes, l = lags

N ← 7 . Number of grammar families
for i in 1:N do

h← height(grammar[i]) . h = number of levels in a grammar family
exprList = {RHS(grammar[i].level[1])}
for gramLvl in 2:h do

count1 = Count(exprList)
count2 = RuleCount(grammar[i].level[gramLvl])
exprListTemp = {}
for gramRuleBottom in 1:count1 do

nt1 = exprList[gramRuleBottom]
topExprList = RHS(grammar[i].level[gramLvl])
for gramRuleTop in 1:count2 do

nt2 = topExprList[ruleCountTop]
exprListTemp = {exprListTemp, LANGUAGE

PARSER(nt1, nt2) }
exprList = exprListTemp

exprlist = RemoveDuplicates(exprlist)
for k in 1:exprlist do . k is a feature expression

if k contains n, l then
Generate features ∀ n, l combinations of k(n, l)

[V ]k = mRMR(eval(exprlist)) . Expressions to numeric features
[V ]1000 = sort([V ]k)[1 : 1000] . Highest 1000 mRMR ranked features
return [V ]1000
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3.4. Feature Selection

The proposed CFG based framework generates a large number of features parametrized

by the window size n and lag l. Some features have no parameters while others have

one or both. We used n = 5, 15, 30 and l = 0, 1, . . . , 6. This means that multiple fea-

tures can be generated from an expression, i.e. the expression sd(lag(C,l),n)

leads to 21 different features considering all n × l combinations. It is important to

select the appropriate (n, l) for each feature to obtain the most informative features.

A range of FS techniques were explored to compare the performance. The filter

FS techniques used were information gain, mRMR, correlation and Relief. The

individual feature goodness for each feature was assessed against the target variable,

e.g. the closing price of stock index time-series. Once the features were ranked, an

appropriate number of features were used for the prediction task. Dimensionality re-

duction using the principal component analysis (PCA) was also considered. mRMR

followed by integer GAs was found to give the best results.

Integer GA mutation was done according to the criterion x(1 + u), where x was

the current gene and u ∼ U(−.05, .05). The crossover was performed on 2 chromo-

somes selected using the roulette-wheel criterion (also called steady-state selection).

In roulette-wheel selection, the probability of selecting the ith chromosome, denoted

with bi, follows a Bernoulli distribution by p = φ(bi)/
n∑
j=0

φ(bj), where φ(·) is the

cost function. Each gene of the chromosome bi represents a feature number hence a

chromosome represents a feature subset. This feature subset was used to train and

validate a SVM and the Root-Mean-Squared-Error (RMSE) of the feature subset was

considered as the cost of the chromosome φ(bi). Single-point crossover was used. A
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crossover point in the integer string was chosen at random and the string sections of

the two parents were exchanged to produce a child chromosome.

3.5. Predicting Financial Time-series

In a typical application of ML to time-series prediction, it is common practice to

divide the time-series into training, validation, and testing (out-of-sample) sets. The

training set was used to construct a model. The validation set was used to evaluate

the generalization ability of the trained model. The model parameters were tuned

such that the model performs satisfactorily on the validation set.

The sliding or moving window (also known as walk-forward testing) is a form

of online training where the model is frequently retrained. The number of samples

in the testing set determines the retraining frequency of the model. For one-step

ahead predictions, this means that the model can be retrained after every prediction.

The data is divided into a series of overlapping training-validation-testing sets. The

typical training-validation-testing concept is still present, but now only the most

recent observations are used to construct models. We have found this to be more

robust.

An SVM with radial basis function (RBF) kernel K(x, y) = exp(−γ‖x− y‖2),

where γ is a user-selected parameter, is used for prediction (Vapnik, 1999; Cortes and

Vapnik, 1995). This kernel maps input samples to a high-dimensional feature space

and is a universal approximator widely used in machine learning. Cross-validation

via parallel grid-search, genetic algorithms, random search, heuristics search and

inference of model parameters within the Bayesian evidence framework are some
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parameter search techniques. The performance of different parameter combinations

is assessed by the learner performance, e.g. mean squared error.

K-fold cross validation, 2-fold cross validation, leave-one-out cross validation

and repeated random sampling cross validation are some popular cross validation

techniques. Time-series cross validation is slightly different because the data are

not independent and leaving an observation out does not remove all the associated

information due to the correlations with other observations. We used extensive pa-

rameter combination assessment via a parallel grid-search on the validation data.

Parameter tuning using the validation data prevents the over-fitting problem. The

final performance of the learner was evaluated using the best parameters in the

validation phase. Time-series cross validation (Hyndman, 2010) was done by first

fitting the model to the data y1, . . . , yt, and then forecasting ŷt+1. The root mean

square error (RMSE), e∗t =
√

( 1
n

n∑
i=1

(yi − ŷi)2), is then computed and this repeated

for t = m, . . . , n− 1 where m is the minimum number of observations needed to fit

the model. Finally, the average RMSE is computed as a figure of merit.

The proposed feature selection procedure hence begins with the generation of a

large set of numerical features which are pruned to the top 1000 using mRMR as

described in Algorithm 2. A GA and SVM is then used to perform further prune to

N features using the wrapper-based feature selection approach described in Algo-

rithm 3.

In order to quickly discover better feature subsets, specific chromosomes were

placed in the initial population (suggestions in Algorithm 3) which were known to

work well in general, e.g. standard technical indicators. This is possible since the rule

sequence to generate a specific technical indicator (or a feature in general) is known.
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This ensures that the initial population is healthy and encourages the generation of

high performing feature subsets. The rest of the population consists of randomly

generated individuals.

Algorithm 3 Feature Selection using Integer Genetic Algorithm,
trainData is the training set and vData the validation set.

function FEATURE SELECTION([V ]1000, N ) . N = number of desired features
chroms← {} . chromosomes, initially empty
for s in 1:|suggestions| do

chroms = {chroms, suggestions[s]}
for r in suggestions:popSize do . popSize = 100

chroms = {chroms,GenerateRandomChrom()}
bestChroms← {}
error[1 : popSize] = 0
for i in 1:iterations do . iterations = 50

chroms = bestChroms
for j in 1:popSize do . popSize = |chroms|

feats = MappedFeatures(chromj)
trained = TrainSVM(trainData, eval(feats))
tunedC,γ = TuneSVMModel(vData, trained)
errorj = RMSE(vData, tunedC,γ) . RMSE of jth chrom

bestChroms = RouletteWheelSelection(chroms, error)
bestChroms = Crossover(bestChroms, 0.3) . Probability 0.3
bestChroms = Mutate(bestChroms, 0.01) . Probability 0.01

rankedErrors = Rank(bestChroms)
bestChrom = IndexOf(rankedErrors[1])
bestFeats = MappedFeatures(bestChrom)

return bestFeats

4. DATA ANALYSIS

This section explores the effectiveness of using standard technical indicators as

features and attempts to discover better numeric features, i.e. new technical indicator

type formulae, that can give better predictions for a particular ML algorithm.

We tested the performance of our proposed methodology for forecasting the daily
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closing prices of major stock market indices. The data comprise daily recordings

between 23 October 1998 and 15 May 2006. Of the 1900 trading days, data from

1500 days were used for training, 200 for validation and the remaining 200 for

prediction. The quantmod package (Jeffrey, 2013) in R was used to extract the

data as well as the time-series of the technical indicators.

The daily closing price of stock indices were forecasted using a support vector

machine (SVM) with Gaussian kernel. The grammar generated features were used

as inputs and a comparison with standard technical indicators made. For a fair com-

parison the number of features used in both cases was 25. Feature subset selection

using the GA was repeated 10 times with different initialization. The results were

averaged over the 10 runs.

In the case of the SVM, the parameters were selected by a grid search in the

region C = {1, 10i, i = 1, 2, . . . , 10} for the regularization parameter and γ =

{21−2i, i = 1, 2, . . . , 8} for the kernel parameter. The search was parallelized on

multiple cores using the snowfall package in R (Knaus, 2010). The SVM was

implemented using the e1071 package (Meyer et al., 2012).

4.1. Results and Discussion

For a given stock index, feature selection using the GA method was repeated 10

times with different initialization and a histogram was constructed. The results for 4

indices are shown in Table 14, with the standard technical indicators (TIs) indicated

in bold. We find for each stock index only a very small number of standard TIs

appear in the grammar generated features. For example, for GSPC only Disparity
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was found to be significant. For the SSMI no standard TIs were selected and for the

FTSE only Bias and Disparity were found to be moderately significant.

Table 15 is a list of grammar generated features arranged in descending order

of the frequency of selection, obtained by aggregating the results for the 10 indices

considered in Table 16. We find that only 7 of the 25 standard TIs appear in the list,

the other 57 are grammar generated features. The other frequently selected TIs were

K (9), ROC (8), OSCP (8), Slow K (8), SMA (8), ATR (6), R (6), ADO (4) and

Chaikin volatility (4).

One pattern apparent from Table 15 is X-(sd(lag(Y,k),n) where X,Y ∈

{C,H,L,M}. This occurs 5 times in the top 10 most frequent features. Similarly,

X-(Y-lag(Z,k)/n) where X,Y,Z ∈ {C,H,L,M}, occurs 6 times in the top

20. These are two examples of a new and salient indicators discovered by our tech-

nique.

To gauge the performance of the ML techniques, a comparison was made with

the traditional model-based approaches such as the AR(1), EMA with window size

p = 5, 10, 15, exponential time-series smoothing (ETS) and the ARIMA. The pa-

rameters for the ETS and the ARIMA models were chosen using the forecast

package (Hyndman et al., 2013). Table 16 summarizes the out-sample RMSE for

the 10 indices, and compares them with an SVM using standard technical indicators,

and SVM using the proposed feature generation technique. From Table 16, we make

the following observations:

(1) With the exception of NDX, forecasts for all major stock indices were more ac-
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curate using the machine learning approaches compared to traditional model-based

approaches.

(2) With the exception of SSEC, TWII and GDAXI where the SVM with standard TIs

as features produced minimum error, for all other major indices including NDX,

the SVM with grammar based features performed better. For SSEC and TWII the

difference in the performance was only marginal, .51 and .28 respectively.

(3) The advantage of the proposed approach is most pronounced for FTSE where an

improvement in performance of 7.63 was recorded. Using standard TIs as features

led to a performance below that of model-based methods except EMA.

(4) For FTSE, the performance of ETS comes closest to our proposed approach. How-

ever, we find that for all other indices, the difference in the performance is more

significant.

(5) For NDX, the model-based methods give a higher accuracy. This is most likely

due to some structure in the time-series where there is dependence on the history.

This is supported by the RMSE which is considerably smaller compared to other

indices which seems to suggest that such models provide a reasonable fit to the

data. However, we observe that the performance of the model-based methods is only

marginally better than our technique.

5. CONCLUSION AND FUTURE WORK

The forecast accuracy of ML techniques is highly dependent on the choice of

suitable input feature vectors. We applied context-free grammars to automatically

generate a large pool of informative features in the form of customized technical
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indicators, and introduced the notion of grammar families as a compact representa-

tion to generate a rich class of features. The proposed approach is flexible in that

the number of grammar families and the organization of the production rules can be

adapted. Users can tune the grammar and incorporate domain specific knowledge by

choosing appropriate derived variables and production rules. We discussed in detail

the practical issues and the implementation procedure. Empirical results using major

stock market indices showed improvements over the standard approach of picking a

set of standard technical indicators as input features.

The grammar developed in this work was designed to generate only a limited

set of technical indicators. Advanced technical indicators can be generated by com-

bining probabilistic context-free grammar and genetic algorithms. The grammar can

also be applied to transformations such as the wavelets of the time-series. This will

be pursued in future work. In addition, robust feature selection for non-stationary

time-series using ensemble approaches and non-linear dimension reduction tech-

niques will also be investigated further.

In this study, feature subset selection was done on the validation data. It is

assumed that the subset is optimal for the forecast interval. However, due to the

dynamics of the time-series it is likely that such a subset will not be optimal over the

entire forecasting interval. This is evident from GDAXI, SSEC and TWII where

the grammar based SVM does not perform better than the TI-based SVM. It is

expected that by regularly repeating the feature subset selection the accuracy of the

ML techniques using the grammar generated features can be further improved. The

details of how the subset selection can be done dynamically and the choice of the

interval over which selection needs to be repeated will be investigated elsewhere.
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Improved genetic algorithms for feature selection tailored to this technique will

assist in making the technique more efficient on more complex problems with more

features. In combination with increasing computing power, the range of potential

applications of this technique is likely to increase rapidly.

The proposed approach is general and is not limited to financial time-series.

Other time-series can be explored and appropriate grammars can be developed. By

using the proposed approach, an insight into features that work well can be obtained

hence experts can use the proposed feature generation framework in any application

to supplement their own set of manually selected features.

[Table 1 about here.]
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FIGURE 1: Step-wise generation of A/D oscillator indicator.
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FIGURE 2: Step-wise generation of the disparity indicator.
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User defined layers e.g. ema(c(i)k , n)

Transformation layer elements c(i)k are passed to the higher layers

Transformation layer Fractional combinations e.g. (b
(i)
k − b

(j)
k )/b

(j)
k

Additive combinations e.g b(i)k ± b
(j)
k

Base operators e.g. log(b(i)k )

Running operators e.g. func(b(i)k , n) (see Table 5)

Base layer elements b(i)k are passed to the transformation layer

Base layer Derived variables f
(1)
k , . . . , f

(l)
k

Observed variables x
(1)
k , . . . , x

(m)
k

Table 4: Layered organization of operators for feature generation.
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Base operators Running operators (window size n)
diff(x, n) xk − xk−n sma(x,n) simple moving average
log(x) natural log wilder(x,n) Wilder exponential moving average
delt(x) (xk − xk−1)/xk ema(x,n) exponential moving average
abs(x) |xk| wma(x,n) weighted moving average
lag(x, n) xk−n max(x,n) maximum value

min(x,n) minimum value
sd(x,n) standard deviation
sum(x,n) summation
meandev(x,n) mean deviation
skewness(x,n) skewness
kurtosis(x,n) kurtosis
median(x,n) median

Table 5: Base operators and running operators.
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Family 1

N = {L1, L2, L3}
T = {− , ÷, lag, sma, meandev, sum, H, L, C, M, n, l, N, ( , ) }
S = {L3}

Production rules :R
〈L3〉 ::= (〈L2〉) ÷ (lag(〈L2〉, l)) | (〈L2〉) ÷ (〈L2〉) (1.a), (1.b), (1.c)

| ((〈L2〉) − (〈L2〉)) ÷ N | 〈L2〉 (1.d), (1.e)

〈L2〉 ::= 〈L1〉 − lag(〈L1〉, l) | 〈L1〉 − sma(〈L1〉, n) (2.a), (2.b)
| meandev(〈L1〉, n) | sum(〈L1〉, n) | 〈L1〉 (2.c), (2.d), (2.e)

〈L1〉 ::= H | L | C | M (3.a), (3.b), (3.c), (3.d)

Table 6: Grammar family 1.



35

Family 2

N = {L1, L2, L3, L4}
T = {− , ÷, lag, sma, ema, wma, H, L, C, M, delt, diff, n, l, ( , ) }
S = {L4}

Production rules :R
〈L4〉 ::= (〈L3〉) ÷ (〈L3〉) | (〈L3〉 − 〈L3〉) | 〈L3〉 (1.a), (1.b), (1.c)

〈L3〉 ::= ema(〈L2〉, n) | sma(〈L2〉, n) | wma(〈L2〉, n) (2.a), (2.b), (2.c)
| sma(ema(〈L2〉, n), n) | 〈L2〉 (2.d), (2.e)

〈L2〉 ::= diff(〈L1〉) | delt(〈L1〉) | lag(〈L1〉, l) (3.a), (3.b), (3.c)

〈L1〉 ::= H | L | C | M (4.a), (4.b), (4.c), (4.d)

Table 7: Grammar family 2.
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Family 3

N = {L1, L2, L3}
T = {− , ÷, lag, sma, meandev, sum, Hh, Ll, C, n, k, ( , ) }
S = {L3}

Production rules :R
〈L3〉 ::= (〈L2〉) ÷ (〈L2〉) | sma(〈L2〉, n) | 〈L2〉 (1.a), (1.b), (1.c)

〈L2〉 ::= 〈L1〉 − lag(〈L1〉, k) | sma(〈L1〉, n) (2.a), (2.b)
| meandev(〈L1〉, n) | sum(〈L1〉, n) | 〈L1〉 (2.c), (2.d), (2.e)

〈L1〉 ::= H+ | L− | C (3.a), (3.b), (3.c)

Table 8: Grammar family 3.
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Family 4

N = {L1, L2, L3, L4, L5}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {L5}

Production rules :R
〈L5〉 ::= (〈L3〉 ÷ 〈L4〉) | (〈L3〉 ÷ N) | 〈L4〉 (1.a), (1.b), (1.c)

〈L4〉 ::= ema(〈L1〉, n) | sum(〈L1〉, n) | max(〈L1〉, n) (2.a), (2.b)
| min(〈L1〉, n) | (〈L1〉) ÷ N | 〈L1〉 (2.c), (2.b), (2.c)

〈L3〉 ::= 〈L2〉 − ema(〈L2〉, n) | ema(〈L2〉, n) | meandev(〈L2〉, n) (3.a), (3.b)
| sum(〈L2〉, n) | max(〈L2〉, n) | min(〈L2〉, n) (3.c), (3.d), (3.e)

〈L2〉 ::= H | L | C (4.a), (4.b), (4.c)

〈L1〉 ::= i+ | i− (5.a), (5.b)

Table 9: Grammar family 4.
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Family 5

N = {L1, L2, L3}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {expr}

Production rules :R
〈L5〉 ::= 〈L3〉 ÷ (〈L3〉+〈L4〉) | 〈L3〉 ÷ (〈L3〉−〈L4〉) (1.a), (1.b), (1.c)

〈L4〉 ::= ema(〈L1〉, n) | sum(〈L1〉, n) | meandev(〈L1〉, n) | max(〈L1〉, n) (2.a), (2.b)
| min(〈L1〉, n) | delt(〈L1〉) (2.c), (2.d), (2.e)

〈L3〉 ::= ema(〈L1〉, n) | sum(〈L1〉, n) | meandev(〈L1〉, n) | max(〈L1〉, n) (3.a), (3.b)
| min(〈L1〉, n) | delt(〈L1〉) (3.c), (3.d), (3.e)

〈L2〉 ::= F− | D (4.a), (4.b)

〈L1〉 ::= F+ | U (5.a), (5.b)

Table 10: Grammar family 5.
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Family 6

N = {L1, L2, L3}
T = {− , ÷, lag, ema, sma, meandev, sum, H, L, C, n, k, i+, i−, ( , ) }
S = {L4}

Production rules :R

Production rules :R
〈L4〉 ::= (〈L1〉 − 〈L3〉) ÷ (〈L2〉 − 〈L3〉) | 〈L2〉 | 〈L3〉 (1.a), (1.b), (1.c)

〈L3〉 ::= sma(〈L1〉, n) - 2× sd(〈L1〉, n) (2.a)

〈L2〉 ::= sma(〈L1〉, n) + 2× sd(〈L1〉, n) (3.a)

〈L1〉 ::= H | L | C | H-L | H-C | C-L (4.a), (4.b), (4.c), (4.d), (4.e), (4.f)

Table 11: Grammar family 6.
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Family 7

N = {L1, L2, L3}
T = {− , ÷, lag, sma, H, L, C, M, n, k, ( , ) }
S = {expr}

Production rules :R
〈L3〉 ::= (〈L2〉) ÷ (〈L2〉) | (〈L2〉 − 〈L2〉) | 〈L2〉 (1.a), (1.b), (1.c)

〈L2〉 ::= ema(〈L1〉, n) | sma(〈L1〉, n) | wma(〈L1〉, n) (2.a), (2.b), (2.c)
| sma(ema(〈L1〉, n), n) | 〈L1〉 (2.d), (2.e)

〈L1〉 ::= lag(V, l) (3.a), (3.b)

Table 12: Grammar family 7.
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Family # Standard technical indicators generated

1 CLV, CCI, ROC, A/D Oscillator, Bias, Lagged prices
2 EMA, SMA, WMA, Lagged prices, Disparity, MACD, SD, Price Oscillator
3 R, K, D, Slow D
4 Aroon
5 RSI, MFI
6 BB, Chakin volatility
7 Volume related indicators

Table 13: Standard technical indicators generated by each grammar family.
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Feature Freq.

1 Disparity 32
2 C-(sd(lag(C, l), n)) 24
3 C-(sd(lag(M, l), n)) 23
4 C-(sd(lag(L, l), n)) 22
5 H-(sd(lag(C, l), n)) 21
6 L-(sd(lag(L, l), n)) 21
7 sd(diff(H), n))/(sd(delt(L), n)) 21
8 (H-(M-lag(C, l)))/n 20
9 (C-(L-lag(L, l)))/n 19
10 Bias 18
11 L-(sd(lag(H, l), n)) 18
12 (M-(H-lag(H, l)))/n 18
13 (C-(M-lag(H, l)))/n 17
14 H-(sd(lag(L, l), n)) 17
15 L-(sd(lag(M, l), n)) 17
16 (L-(H-lag(L, l)))/n 17
17 (sd(diff(H), n))/(sd(delt(M), n)) 17
18 Lower Bollinger Band 17
19 (C-(meandev(M, n)))/n 16
20 (H-(L-lag(H, l)))/n 16
21 M-(sd(lag(M, l), n)) 16
22 M-(sma(ema(diff(L), n), n)) 16
23 (C-(H-lag(C, l)))/n 15
24 C-(sd(diff(C), n)) 15
25 C-(sma(ema(diff(L), n), n)) 15
26 L-(sd(diff(C), n)) 15
27 sma(L, n) - 2*(sd(L, n)) 15
28 (C-(H-lag(H, l)))/n 14
29 (C-(L-lag(C, l)))/n 14
30 (C-(L-lag(H, l)))/n 14
31 (C-(L-sma(L, n)))/n 14
32 CLV 14

Feature Freq.

33 (lag(M, l))-(sd(lag(H, l), n)) 14
34 M-(sma(ema(diff(M), n), n)) 14
35 sma(L, n) + 2*(sd(L, n)) 14
36 C-(H-lag(L, l)))/n 13
37 C-(H-sma(L, n)))/n 13
38 C-(sd(lag(H, l), n)) 13
39 H-(sd(lag(M, l), n)) 13
40 (M-(L-lag(H, l)))/n 13
41 (sd(diff(C), n))/(sd(delt(C), n)) 13
42 (sd(diff(C), n))/(sd(delt(M), n)) 13
43 (sd(diff(L), n))/(sd(delt(M), n)) 13
44 sma(M, n) + 2*(sd(M, n)) 13
45 C-(sma(diff(H), n)) 12
46 C-(sma(ema(diff(M), n), n)) 12
47 H-(sma(diff(H), n)) 12
48 L-(sd(lag(C, l), n)) 12
49 M-(sd(lag(L, l), n)) 12
50 (L-(H-lag(C, l)))/n 12
51 (M-(L-lag(C, l)))/n 12
52 (sd(diff(M), n))/(sd(delt(L), n)) 12
53 Upper Bollinger Band 12
54 Aroon 11
55 (C-(H-lag(M, l)))/n 11
56 (C-(M-lag(L, l)))/n 11
57 (H-(meandev(L, n)))/n 11
58 Lagged closing price 11
59 H-(sd(diff(L), n)) 11
60 H-(sd(lag(H, l), n)) 11
61 M-(sd(lag(C, l), n)) 11
62 M-(sma(ema(diff(H), n), n)) 11
63 (sum(L, n))/(max(i+, n)) 11
64 sma(H, n) + 2*(sd(H, n)) 11

Table 15: Technical indicators and selected grammar feature frequency.
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FTSE N225 NDX HSI SSMI
Method
ARIMA 34.33 207.07 14.35 138.95 47.96
ETS 33.54 207.13 14.05 139.95 47.14
AR(1) 33.71 207.21 13.98 140.24 47.60
EMA 42.63 275.20 14.05 183.51 61.42
SVM (TIs) 40.27 203.99 15.15 136.70 46.26
SVM (Grammar) 32.64 203.30 14.37 135.11 46.17

SSEC TWII AORD GDAXI GSPC
Method
ARIMA 19.78 69.52 29.97 44.19 7.58
ETS 19.78 69.46 29.80 44.08 7.60
AR(1) 19.71 69.41 29.97 44.18 7.61
EMA 28.16 96.55 38.81 58.26 9.39
SVM (TIs) 18.03 66.85 29.23 43.70 7.54
SVM (Grammar) 18.54 67.13 28.61 44.49 7.49

Table 16: RMSE for test data for major stock indices using the ARIMA, ETS, AR(1),
EMA (p = 5) and SVM using technical indicators (TIs) and grammar features.


