A Runtime Reconfigurable Implementation of
the GSAT Algorithm

Wong Hiu Yung, Yuen Wing Seung, Kin Hong Lee, and Philip Heng Wai Leong

Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T. Hong Kong
{hywong?2,wsyuen,khlee,phwl}@cse.cuhk.edu.hk

Abstract. Boolean satisfiability (SAT) problems are an important sub-
set of constraint satisfaction problems (CSPs) which have application
in such areas as computer aided design, computer vision, planning, re-
source allocation and temporal reasoning. In this paper we describe an
implementation of an incomplete heuristic search algorithm called GSAT
to solve 3-SAT problems. In contrast to other approaches, our design is
runtime configurable. The input to this system is a 3-SAT problem from
which a software program directly generates a problem—specific configu-
ration which can be directly downloaded to a Xilinx XC6216, avoiding
the need for resynthesis, placement and routing for different constraints.
We envisage that such systems could be used in hardware based real time
constraint solving systems.

1 Introduction

A constraint satisfaction problem (CSP) is a problem with a finite set of vari-
ables. These variables can take values within a certain finite domain subject to
a set of constraints which restricts them. The solution of a CSP involves finding
an assignment of the variables which violates no constraints. Many real life prob-
lems such as scheduling, graph coloring, circuit test pattern generation, circuit
synthesis and scene labeling can be formulated as constraint satisfaction prob-
lems. These are mostly NP hard problems and algorithms to efficiently solve
them have been the field of active research in artificial intelligence (AT).
Algorithms for solving CSPs can be complete or incomplete. Complete al-
gorithms, by definition, can find all of the solutions to a problem and typically
involve pruned tree searches. However, since CSPs are NP hard, in practice the
long execution times involved make it difficult to find any solution. In many ap-
plications, completeness is unnecessary and by removing this restriction, much
faster heuristic algorithms can be employed to quickly scan the search space.
Such incomplete algorithms are able to solve otherwise intractable CSPs. GSAT
[1] is an incomplete algorithm for solving the boolean SAT problem. The boolean
SAT problem is a CSP in which the variables are binary and the constraints are
represented by a boolean equation in a product of sums form. Each sum term is
called a clause and is the sum of single literals, where a literal is a variable or its

2 H.Y. Wong et al.

negation. If there are n literals in each clause, the problem is called an n-SAT
problem.

Several hardware designs which solve CSPs have been proposed [2-5] and all
shown significant speed improvement over software implementations. An impor-
tant limitation of all of the complete and incomplete implementations described
above is that they generated a high level description of a circuit which was cus-
tomised for the constraint problem. Thus a complete iteration of the synthesis,
place and route cycle was required for each new set of constraints. These steps
are time consuming (it can take several hours to synthesize, place and route a
large design) and precludes its use in real time systems.

In this paper we describe an FPGA architecture and its implementation
which enables the direct generation of a problem specific configuration for solving
the GSAT problem. Our design exploits the open architecture of the Xilinx
X(C6200 series FPGAs which is used to directly configure the circuit from the
constraints. The remainder of the circuit is fixed. Using this technique, the need
for synthesis, placement and routing of a new circuit for different constraints is
eliminated, resulting in a large savings in compilation time. It should be easy to
adapt this reconfiguration technique to other constraint solving algorithms.

2 Implementation

The GSAT algorithm [1] is a simple greedy search based method for solving SAT
problems. Basically, each iteration of the algorithm is performed by flipping the
bit of the variable which would result in the largest improvement in the number
of satisfied clauses. This process is repeated Maxflips times. If no solution is
found, a new random variable assignment is made and the process repeated (up
to Maxtries times). For a boolean constraint equation F, the algorithm can be
described by the following pseudocode

GSAT(int Maxtries, int Maxflips) {
for (i=1 to Maxtries) {
V = a random instantiation of the variables;
for (i = 1 to Maxflips) {
p = variable whose negation yields largest
increase in number of satisfied clauses;

V = V with p flipped;
¥
if (F(V) is true)
return V;
}
return the best instantiation found;

Our implementation of the GSAT algorithm uses reconfigurable hardware to
implement the inner loop of the algorithm described in the previous section, i.e.
the calculation of p. The rest of the GSAT algorithm is implemented in soft-
ware which maximises the flexibility of our hardware. The software downloads

A Runtime Reconfigurable Implementation of the GSAT Algorithm 3

a variable assignment to the board. The hardware flips each variable in turn
and computes the number of satisfied clauses and after each variable has been
flipped, the variable whose negation yielded largest increase in number of sat-
isfied clauses is returned to the software program. The software then computes
the next variable assignment by flipping that variable.

A block diagram of the hardware architecture is shown in Figure 1. The vari-
able memory is a register that is used to hold the current variable configuration
is called the variable memory. The host computer writes a new variable config-
uration every iteration of the algorithm. The flip-bit vector is a shift register
used to cycle through each variable of the variable memory in sequence. Only
one bit of the flip—bit vector is asserted at any time so an exclusive—OR, of the
flip—bit vector and the variable memory will negate that bit (see Figure 2). The
clause checkers are used to implement the sum terms of the constraint equation.
Inputs to the clause checkers are variable assignments. For a problem with n
clauses, n parallel clause checkers are used to implement all of the clauses and
since our hardware is restricted to 3-SAT problems, each clause checker has 3
inputs. Thus each clause checker is simply a 3 input OR gate with active low or
active high inputs depending on the equation. The sum register is used to store
the largest number of satisfied clauses. The M-bit adder is used to calculate the
number of satisfied clauses. For a problem with M clauses, M 1 bit numbers
must be summed to find the number of satisfied clauses. Since the adder is in
the critical path of the design, a tree adder was used. As a result, there will be
log, M levels of delay. Moreover, each level towards the root of the tree has an
additional bit of precision. Thus in the kth level, all inputs are k—bits and they
are added together in a pairwise fashion to generate a k+1 bit result. The com-
parator is used to compare the current number of the satisfied clauses with the
value in the sum register to see if a better result had been found. In the event
that the current number of satisfied clauses is equal to the best value stored
in sum register, the random bit generator is used to decide which solution to
keep. This prevents the algorithm from being captured in a local minima. The
Random bit generator is implemented as a linear feedback shift register and the
equation used is bit(0) = bit(3) xor bit(4) xor bit(5) xor bit(7).

The target device for our implementation was a Xilinx XC6216 reconfigurable
processing unit (RPU) [6]. This device was selected mainly because the open ar-
chitecture of the RPU documents how the low level configuration bits relate to
the hardware of the device. Other FPGA architectures do not provide this in-
formation making it extremely difficult to generate configurations without going
through the vendor’s CAD software. The Virtual Computer Company (VCC)
H.O.T. Works development system was used to test the design. This PCI board
includes a Xilinx XC6216 reconfigurable processing unit (RPU) together with
SRAM memory and a PCI interface.

With the exception of the clause checkers, the circuits were synthesised from
VHDL descriptions using the Velab VHDL elaborator version 0.52. They were
then placed and routed using the Xilinx XACTstep 6000 tools. The clause check-
ers are problem dependent and are customised by a C program. The implemen-

4 H.Y. Wong et al.

tation of a clause is illustrated in Figure 3. All of the variables are routed in
horizontal lines and the logic to implement a particular clause are distributed
in a vertical direction. In order to implement the routing and logic, 5 different
logic configurations are required as detailed in the figure. Compared with the
general problem of placement, routing or logic synthesis, this task is trivial and
is performed in linear time. The software customises the logic equation of each
clause checker and writes the new configuration into the address mapped con-
figuration of the XC6200 memory [6]. In the XC6200 devices, this can be done
without affecting the nonconfigurable parts of the circuit.

Ultimately, the compactness of the circuit implementation determines the
size of the SAT problem that can be solved using the system. For v vari-
ables and n clauses, the amount of logic required for our design is variable
memory (v); flip-bit (2v); clause checkers (nv); sum register (3log,v); adder
(3n Z}:jin(k/‘Z)k + log, n); comparator (8log, n); and random number genera-
tor (12). For the XC6200 device, we estimated that the total resources required
(i.e. logic+routing) were approximately 4x that of the logic alone. The clause
checkers dominate the size of the circuit. A method of overcoming this problem
is to use a non-runtime reconfigurable clause checker which utilises exactly the
same design except that the clause checker circuitry is synthesised from VHDL.
This customisation of the clause checker reduces its logic from nv to 2n since
a specific routing pattern is much more compact than the general case. With
a non-runtime reconfigurable clause checker, the 50 variable 80 clause problem
to fit on the XC6216 which contains 4096 cells. A smaller 8 variable 16 clause
problem was used to test the runtime reconfigurable clause checker.

3 Results

The design was tested on the aim-50-1_6-yesl-1.cnf (aim) benchmark problem
from the Second DIMACS Implementation challenge on NP Hard Problems:
Maximum Clique, Graph Coloring, and Satisfiability [7]. This problem has 50
variables and 80 clauses. A smaller problem (small) with 8 variables and 16
clauses was also tested. This problem was generated using the muwff program
from DIMACS [7,8].

Table 1 shows the total VHDL compile time, VHDL compile time of just
the clause checker and the execution time of our runtime configuration approach
using a Pentium II 300MHz 64MB Ram system running Winows 98. It can
be seen that a four orders of magnitude improvement in the time required to
translate the problem into the clause checking circuit is seen. The same table also
compares the execution time of a software implementation of the GSAT program
version 41 written by Selman and Kautz [1] running on a Sun Ultra-5 machine
with the hardware execution times. The final column shows the maximum clock
frequency given by the XACTstep software.

Our design is currently faster than the software version for the small prob-
lem but slower for the aim problem. Although a software implementation on a
typical workstation is roughly two times faster for the aim problem, it must be

A Runtime Reconfigurable Implementation of the GSAT Algorithm 5

Problem|Total| Clause|Runtime|Software|Hardware|Frequency
Checker| Config
B 6 my) (s (ms)] (MHy
small 52 16 1.2 0.59 0.032 9.12
aim 900 90 7 5.14 13.5 417

Table 1. Table comparing the compilation and execution times of various GSAT im-
plementations.

remembered that it is achieved using very few logic gates. For embedded systems
where circuit size, cost, power dissipation and reliability are concerned the RPU
implementation offers significant advantages.

4 Conclusion

Using a problem specific architecture and runtime configuration, a four order of
magnitude speedup in the reconfiguration time of the GSAT algorithm over the
conventional approach involving resynthesis, placement and routing was demon-
strated. The design was tested on hardware and achieved approximately the
same performance as that of a modern workstation but at greatly reduced hard-
ware cost, power consumption and memory requirements. We envisage that such
systems could be used in hardware based real time constraint solving systems
and may have applications in signal processing, robotics and control.

References

1. B. Selman et. al., “A new method for solving hard satisfiability problems,” in Proc.
of AAAI-92, pp. 440-446, 1992.

2. M. Yokoo et. al., “Solving satisfiability problems using field programmable gate
arrays: First results,” in Proc. of the 2nd Inter. Conf. on Principles and Practice of
Constraint programming, pp. 497-509, 1996.

3. P. Zhong et. al., “Accelerating boolean satisfiability with configurable hardware,” in
IFEE Symposium on Field-Programmable Custom Computing Machines, pp. 186—
195, 1998.

4. Y. Hamadi and D. Merceron, “Reconfigurable architectures: A new vision for opti-
mization problems,” in Principles and Practice of Constraint Programming CP97,
(Austria), pp. 209-215, 1997.

5. T. Suyama et. al., “Solving satisfiability problems using logic synthesis and re-
configurable hardware,” in Proc. 31st Annual Hawaii Internation Conf. on System
Sciences.

6. X. Inc., XC6200 Programmable Gate Arrays (data sheet). 1997.

7. Dimacs challenge benchmarks.
ftp://dimacs.rutgers.edu/pub /challenge.

8. D. Mitchell et. al., “Hard and easy distributions of sat problems,” in Proc. AAAI-92,
pp. 459-465, 1992.

6

H.Y. Wong et al.

\
‘ >
- ——»
Clause checker

m bit
adder

Flip-bit Vector |

Variable memory ‘

Register

host

(Sum)

T

random
bit

Fig. 1. Block diagram of the GSAT hardware.

To Clause Checker

...000000 —]

‘ shift registe

nitialize with 1 Form Variable Memory

FLIPBIT VECTOR

Fig. 2. Flip bit vector detail.

) M

e.g: clause[0] = a+b+/c
clause[1] = /b+c+d
clause[2] = /a+d

Hence, there are five possible

configuarations for the each cell

case 1

I

case 2

case 3

clause{0] clause(1] clause(2]

case 5

FINISH

Fig. 3. Implementation of the reconfigurable clause checker.

