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Abstract— Recently the availability of tick data is driving
renewed interest in statistical tools for the analysis of high-
dimensional irregularly spaced time series. Since the standard
tools require that the data are evenly spaced, the traditional
multivariate time series analysis techniques are inadequate for
the analysis of tick data. We develop for perhaps the first
time a proper procedure that performs cluster analysis of
tick data using the joint information of the temporal process
and the continuous-valued data at the actual sampling times.
A simulation example studies the problem with the standard
approach and demonstrates the reliability of our proposed
method. Data analyses of major stock market indices and
currencies are provided.

I. INTRODUCTION

RECENTLY in a number of application areas it has

become possible to record measurements at ultra-high

frequency. In computational finance, these data are referred to

as tick data and comprise of recordings at irregularly spaced

intervals and at ultra-fine time scales typically on the order of

1ms. The availability of simultaneous recordings of tick data

from a large number of channels is driving renewed interest

in statistical tools for the analysis of high-dimensional tick

data.

Statistical methods for multivariate time series analysis

generally suffer from the curse of dimensionality problem,

i.e., as the number of dimensions increases the number of

parameters required increases exponentially. The traditional

approach is to perform a dimension reduction such as princi-

pal components analysis (PCA) [1] or equivalently K-means

clustering [2] which has been shown to be closely related to

PCA [3]. Unfortunately, for data with temporal continuity,

such standard tools require that the data are evenly spaced.

In high-frequency econometrics, the standard practice has

been to aggregate the irregularly spaced time series to regular

intervals to which traditional multivariate statistical tools

can be applied [4]. However, there are two issues with

this approach. Firstly, the transformation of the irregularly

spaced time series to a discrete time process loses temporal

information which has been well known in neural coding [5]

and more recently in econometrics where it has been found

to typically lead to blurring of the market microstructure

and spurious inference [6]. Secondly, it is not obvious what

constitutes a judicious selection of the interval for resampling

since a different resampling interval is likely to give a dif-

ferent outcome. This problem is further compounded in the
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multivariate time series setting. The traditional multivariate

time series analysis techniques are therefore inadequate for

the analysis of tick data.

Ideally, one would prefer to avoid aggregating the tick

data and treat the process directly. A natural means to

represent the temporal information is through the point

process formalism. The point process approach based on the

stochastic intensity [7], [8] has been recognized as a flexible

framework for modeling tick data to capture information such

as volatility embedded in the inter-arrival times [9], [6]. In

the case of additional information observed with the temporal

process the marked point process [8] approach may be useful,

but the mark space is restricted to a discrete set. At present

there is no unified way to model a temporal process and

continuous-valued information observed with the temporal

process such as price or volume in a satisfactory manner.

Spectral analysis based on a least squares fit of sinusoids

to irregularly spaced time series was developed in [10], [11]

which encodes the temporal as well as the continuous-valued

information observed jointly with the temporal process. The

procedure is better known as the Lomb-Scargle method

[12], [13] after the authors established the equivalence of

periodogram analysis and least squares fitting of sinusoids

to irregularly spaced data. Computationally efficient imple-

mentation based on the fast Fourier transform (FFT) can

construct the Lomb-Scargle periodogram at M frequencies in

O(M logM) as opposed to a direct implementation requiring

O(Mn) operations for n samples of the time series [14]. The

utility of the Lomb-Scargle method has been recognized in a

number of application areas [15], [16], [17], [18] and more

recently in high-frequency finance [19]. In [20] the Lomb-

Scargle method is used to reveal periodicities in biological

rhythm. [21] takes a similar approach to reveal periodicity in

the foreign exchange tick data. But these works are limited

to the univariate time series case and do not address the curse

of dimensionality problem indicated above.

The main contributions of this work are:

(i) we develop a reliable procedure for cluster analysis

of multivariate tick data for apparently the first

time which does not suffer from the problems

with the standard approach, i.e., loss of temporal

information and using a fixed interval to resample

the multivariate time series. Our proposed proce-

dure uses the Lomb-Scargle method to perform

cluster analysis based on the joint information of

the temporal distribution and the process observed

at the irregular sampling times;

(ii) a simulation example is provided to study the effect
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of different resampling intervals on the cluster anal-

ysis and a comparison of the clustering accuracy of

the standard approach and the proposed approach

is shown;

(iii) cluster analyses of multivariate tick data of major

stock market indices and currencies are presented

and a discussion of the results is offered.

The rest of this paper is organized as follows: Section

II reviews the Lomb-Scargle method and the computational

complexity. Section III discusses a low-dimensional repre-

sentation of the spectral density estimate. Section IV is a

brief discussion on clustering in the K-means cluster centroid

subspace. A simulation study and two data analyses are

presented in Section V. A modified model is proposed and

a least squares estimation procedure is sketched in Section

VI. Finally, Section VII summarizes the paper.

Notation. We will use matrix Φd×p of dimensions d ×
p and the singular value decomposition (SVD) Φ =
Ud×dΣd×pV

T
p×p. Φ = (φ1, ..., φp) and the matrix vectoriza-

tion operator vec [22], i.e. vec(Φ) = �φ = (φT
1 , ..., φ

T
p )

T . The

d-vector �y = (ȳ1, ..., ȳd)
T where ȳk ∈ R+ with R+ denoting

the positive reals. tr is the trace operator.

II. SPECTRAL ANALYSIS OF IRREGULARLY SPACED

DATA

A. The Lomb-Scargle Method

For a regularly sampled time series, the standard tools for

analysis in the frequency domain are the Fourier methods

based on the fast Fourier transform (FFT). The extension of

the Fourier methods to irregularly spaced time series is the

Lomb-Scargle periodogram [12], [13].

Given a time series yi := y(ti) at irregularly spaced

intervals ti − ti−1 with 0 < ti ≤ T, i = 1, ..., n, the Lomb-

Scargle (normalized) periodogram is

ȳ(ω) =
1

2σ2

[ (Σn
1 (yi − ŷ) cosω(ti − τ))2

Σn
1 cos

2 ω(ti − τ)
+

(Σn
1 (yi − ŷ) sinω(ti − τ))2

Σn
1 sin

2 ω(ti − τ)

]

where

ŷ =
1

n
Σn

1yi, σ2 =
1

n
Σn

1 (yi − ŷ)2

and

τ =
1

2ω
arctan

(Σn
1 sin 2ωti

Σn
1 cos 2ωti

)

with ω ≡ 2πf, f > 0.

Typically ȳ(ω) is evaluated at 2n or 4n frequencies f ∈
[fl, fh]. The lowest frequency fl to be examined is 1/T and

the highest frequency fh = n/(2T ).

B. Computational Details

Given a sequence of data yi, i = 1, ..., n, a direct imple-

mentation to construct the Lomb-Scargle periodogram at M
frequencies requires O(Mn) operations. In [14], the authors

show that the computations can be done in O(M logM) as

follows.

Define

Sh := Σn
1 (yi − ŷ) sinωti, Ch := Σn

1 (yi − ŷ) cosωti,

S2 := Σn
1 sin

2 ω(ti − τ), C2 := Σn
1 cos

2 ω(ti − τ)

then,

Σn
1 (yi − ŷ) cosω(ti − τ) = Ch cosωτ + Sh sinωτ,

Σn
1 (yi − ŷ) sinω(ti − τ) = Sh cosωτ − Ch sinωτ

and

Σn
1 cos

2 ω(ti − τ) =
n

2
+

1

2
C2 cos 2ωτ +

1

2
S2 sin 2ωτ,

Σn
1 sin

2 ω(ti − τ) =
n

2
−

1

2
C2 cos 2ωτ −

1

2
S2 sin 2ωτ

Interpolate the values yi on the M partitions in [fl, fh]
and take the FFT to obtain Sh, Ch. Interpolate the constant

values 1 on the M partitions and take the FFT; after some

manipulation yields S2, C2.

III. SPECTRAL ESTIMATE IN THE LOW-DIMENSIONAL

SPACE

A. Basis Representation

In the high-dimensional multivariate setting the statistical

analysis of high-frequency data quickly becomes prohibitive

due to the high computational power required to process

large volume of data. An efficient approach to overcome this

impediment is to use a basis representation which gives a

compact form by a weighted sum of a sufficient number

of basis functions which is considerably smaller than the

number of samples of the univariate time series. A least

squares procedure to fit the vector-valued spectral density

is the following.

Given a d-dimensional vector of the spectral estimate

�yω = (ȳ1(ω), ..., ȳd(ω))
T , ȳk(ω) ∈ R+, ω ≡ 2πf , evaluated

at M frequencies f ∈ [fl, fh], we suppose that the spectral

estimate can be represented by

�yω = c̄+ Φ̄ψ̄ω + εω

where c̄ is the d-vector of means, ψ̄ω is a m-vector of basis

functions, Φ̄ is the d×m matrix of coefficients and εω is the

d-vector of residuals.

We rewrite the model above more compactly as

�yω = Φψω + εω

with Φ = (c̄, Φ̄), ψω = (1, ψ̄T
ω )

T . The augmented matrix Φ
is determined by minimizing the least squares criterion,∫ ωh

ωl

1

2δ
||�yω − Φψω||

2dω

where the limits of integration ωl = 2πfl, ωh = 2πfh and δ
is a constant defined below.

Partitioning the interval [ωl, ωh] into tiny bins of size δ
given by ωh−ωl = Mδ, for ωl < ω ≤ ωh we have ω−ωl =
iδ, i = 1, ...,M . Defining �yi := �yωl+iδ, ψi := ψωl+iδ gives

the discretized equivalent,

ΣM
1

1

2
||�yi − Φψi||

2
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Recognizing Φψi = vec(Φψi), we obtain Φψi = (ψT
i ⊗ I)�φ

with �φ := vec(Φ), ⊗ is the Kronecker product and I is the

d× d identity matrix.

The least squares optimization can then be posed as

�φ = argmin
�φ

ΣM
1

1

2
||�yi − (ψT

i ⊗ I)�φ||2 (1)

We rapidly find the solution

�φ = (ΣM
1 (ψi ⊗ I)(ψT

i ⊗ I))−1ΣM
1 (ψi ⊗ I)yi

Proof: Using the result for the derivative of the two-norm,
∂
∂x

||x|| = x
||x|| , the derivative with respect to �φ of the sum in

(1) gives −ΣM
1 (ψi⊗I)(yi−(ψT

i ⊗I)�φ). Setting the derivative

to zero and rearranging the terms gives the required result.

The proof is complete.

B. Computational Details

The solution involves inversion of a pd × pd symmetric

matrix where p = m + 1. The matrix is a lattice of p2

elements where each element is a scaled d × d identity

matrix. Partitioning the matrix, the matrix inversion lemma

[23] delivers,

(
A B
BT C

)−1

=

(
P Q
QT R

)
where P =

S−1, Q = −S−1BC−1, R = C−1BTS−1BC−1 +C−1 and

S = A − BC−1BT is the Schur complement. With Ad×d,

C−1 can be computed by recursively partitioning and using

the matrix inversion lemma until the partition comprises of

d× d scaled identity matrices where C−1, S−1 only require

taking the reciprocal of the scalings.

By undoing the vec operation we obtain the augmented

matrix Φ.

The profile of the spectral estimate suggests

that a basis representation such the cosines ψω =

(ψ
(1)
ω , ..., ψ

(m)
ω )T , ψ

(u)
ω = cos(uπ(ω−ωl)

ωh−ωl

) should give a

reasonably good approximation with the number of basis

functions m << M . This leads to a finite and a more

compact dimensional representation of the spectral estimate

within Φd×p.

IV. CLUSTERING IN THE CENTROID SUBSPACE

Clustering refers to the partitioning of data into disjoint

groups whereby data within a cluster are similar based on

some criterion while data in different clusters are dissimilar.

The K-means algorithm [2], [24] for example minimizes the

sum of the squared errors, i.e.,

ΣK
1 Σi∈Ck

||yi − ỹk||
2

for some data {y1, ..., yn} where K is the number of clusters,

Ck is the k-th cluster, ỹk = 1
|Ck|

Σi∈Ck
yi is the centroid of

Ck and |Ck| is the cardinality of Ck. The solution of the

standard implementation has been found to often converge

to a local minima (see [3] and references therein).

Clustering in the cluster subspace has been shown to be

more robust to clustering in the original space [3, Prop. 3.4].

This is because in the cluster subspace while the between-

cluster distances remain more or less the same as in the

original space, the within-cluster distances shrink. Given K
clusters, the transformation PT y of any vector y yields a

vector in the subspace spanned by the K cluster centroids

where [3], P = ΣK
1 |Ck|ỹkỹ

T
k .

The subspace can be determined by a singular value decom-

position (SVD) as follows.

Given Φd×p, the decomposition of Φ = Ud×dΣd×pV
T
p×p

where Σ is the diagonal matrix of singular values and

the columns of U, V form orthonormal bases in R
d,Rp

respectively, i.e., UTU = Id×d and V TV = Ip×p. For r
principal components with d ≥ p ≥ r, the subspace spanned

by K = r + 1 cluster centroids is Ud×rΣ
2
r×rU

T
r×d.

V. SIMULATION AND DATA ANALYSES

A simulation example is first provided which demonstrates

the problem in aggregating an irregularly spaced time series

in the multivariate setting. Cluster analysis using the pro-

posed approach which does not lose the temporal information

in the irregularly spaced time series is then presented. Then,

data analyses of tick data for major stock market indices

and currencies is presented and a discussion on the results

is offered.

A. Simulation Example

We consider a d = 60-dimensional multivariate time series

which comprises of independent univariate time series. The

irregularly spaced intervals of the univariate time series are

independent and identically distributed with an exponential

distribution with parameter λ. The multivariate time series is

partitioned into 3 groups based on the values λ = 1, 5, 10Hz
but the lack of distinct periodicities will make cluster analysis

difficult.

The intervals of the univariate time series are simulated on

0 < t ≤ T with T = 1000 s by first sampling the counts n
from a Poisson distribution for a given λ and then drawing

n samples u1, ..., un from a uniform distribution so that the

sampling time ti = −λ−1lnui, i = 1, ..., n. The state of the

time series at the sampling time ti is modeled by Brownian

motion that has quadratic variation on [0, t] of t [25]. In

[19] the authors use the autoregressive AR(1) to model the

dynamics but this model does not have a natural extension

in the irregularly sampled data setting. Fig. 1 shows a raster

plot of the uneven sampling times of the multivariate time

series for 100 s where the 3 groups are clearly visible.

1) Cluster Analysis of Aggregated Time Series: The tra-

ditional approach is to aggregate the multivariate time series

using a fixed interval but as already mentioned it is not obvi-

ous how to select an interval to resample the data particularly

in the multivariate setting. Here we present cluster analysis

for a range of values of the discretization step δ.

The univariate time series are discretized on 0 < t ≤
T at intervals of δ = 2, 1, 0.1, 0.01 s using cubic spline

interpolation. For coarse δ steps cluster analysis can be

applied directly to the aggregated time series but for fine

δ values the time series is very high dimensional and a

direct application of the cluster analysis of the aggregated

time series becomes prohibitive. We have found the basis
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representation useful since a cluster analysis on the much

lower dimensional space of the coefficients matrix gives

almost identical results at considerably less computational

time. The aggregated time series is fit using B-splines which

are suitable since the time series is aperiodic. We use m = 40
cubic spline basis elements for the fitting. For δ = 1 s the

true, aggregated and fitted time series and the error in the

basis representation are shown for 100 s in Fig. 2 which

suggests that the basis function candidate gives a reasonably

good representation of the aggregated time series.

Assuming the true number of clusters is known, we

proceed by computing the cluster centroid subspace spanned

by the K−1 components of the B-splines coefficients matrix.

For δ = 1 s, K-means clustering in the cluster centroid

subspace assigns only 3 members to one of the clusters. The

clustering result is summarized in the confusion matrix,

C =

⎛
⎝ 13 13 10

6 6 9
1 1 1

⎞
⎠

where [Cij ] is the number of times a data point of cluster j
is assigned to cluster i. The clustering accuracy is 1

d
tr(C) =

33.33%. For δ = 2 s, K-means clustering assigns only 2

members to one of the clusters and yields identical clustering

result to the case δ = 1 s.

For δ = 0.1 s, only 1 member is assigned to one of the

clusters. The clustering result is

C =

⎛
⎝ 14 14 10

6 6 9
0 0 1

⎞
⎠

and the clustering accuracy is 35%. For δ = 0.01 s, the

clustering result is identical to the case δ = 0.1 s.

Note that for finer δ values, T/δ >> nk, the number of

samples of the univariate time series, and will not yield

meaningful result which is also suggested by the cluster

analysis of the aggregated time series with δ = 1ms,

C =

⎛
⎝ 8 7 7

7 5 5
5 8 8

⎞
⎠

We have found that m > 40 gives similar results for the

cluster analysis.

Note that without the information of the true number of

clusters, the SVD of the B-splines coefficients matrix gives

r = 6 principal components (the singular values are shown

in Fig. 3) which yields an incorrect number of of clusters

K = r + 1 = 7.

2) Cluster Analysis of Irregularly Spaced Time Series:

The Lomb-Scargle periodogram for the multivariate time

series is constructed by computing the spectral density esti-

mate for the univariate time series independently on a fine

grid of M = 4max(N) = 42400 partitions in [fl, fh] with

fl = 1/T, fh = 0.25 and N = (n1, ..., nd)
T is the vector

of number of samples of the multivariate time series. The

spectral density for one member of each of the 3 groups is

shown in Fig. 4.
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Fig. 1. Raster Plot of Multivariate Poisson Processes with λ = 1, 5, 10Hz
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Fig. 2. Actual and Aggregated Times Series and B-Splines Representation
and Error in Basis Representation

For reasons already mentioned we perform cluster analysis

in the low dimensional space derived from a basis represen-

tation of the spectral estimate. We have found the cosine

basis function a good candidate for the spectral estimate.

Using m = 40 cosine basis elements to represent �yω ,

the spectral density, cosine basis representation and error

in the representation are shown in Fig. 5 where the high

dimensional multivariate time series is represented in a much

more compact dimensional space within Φ.

We assume no prior knowledge of the true number of

clusters. The number of clusters K = r + 1 = 3 is taken

where r is the number of principal components given by the

SVD of Φ which coincides with the true number of clusters.

Fig. 6 shows the singular values of Φ. K-means clustering

is performed in the cluster centroid subspace. The clustering

result is summarized in the confusion matrix,

C =

⎛
⎝ 14 0 10

3 20 0
3 0 10

⎞
⎠

The clustering accuracy is 73.33% which is much higher

than that obtained using the traditional approach. As already

mentioned the lack of clear periodicites in the point process

makes the exact recovery of the actual clusters extremely

difficult.

To summarize, we can infer that aggregating the multivariate
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Fig. 3. Singular Values of the B-splines Coefficients Matrix

time series loses the temporal information in the uneven sam-

pling times which cannot subsequently be recovered despite

using a very fine interval for resampling. Furthermore, cluster

analysis of the aggregated multivariate time series is likely

to be highly unreliable. The Lomb-Scargle method which

encodes both the temporal as well as continuous-valued

information observed at the actual sampling times captures

the underlying structure which is subsequently recovered

with reasonable accuracy by performing cluster analysis of

the spectral estimate.
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Fig. 4. Spectral Density of 3 Time Series
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Fig. 5. Spectral Density, Cosine Basis Representation and Residual
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Fig. 6. Singular Values of Φ

B. Stock Market Indices

The tick history of 26 of the major world stock market

indices is analyzed. The data comprise of the price of the

indices on September 25, 2012 and the timestamp with an

average of around 11, 000 recordings per index. A raster plot

of the timestamp for the multivariate tick history is shown in

Fig. 7 which shows the highly irregular behaviour of price

movements with significant lapses in recordings. A pattern

emerges from Fig. 7 but the interest here is not to cluster the

indices based on the temporal distribution of the tick history

alone but rather to determine homogenous groups based on

the joint information of the temporal distribution and the

price movements. Clearly, there is no way to represent such

time series using the standard discrete time or continuous

time models without losing temporal information.

The spectral density estimate of the tick history of each

index was computed using the Lomb-Scargle method for

11.58×10−5 ≤ f ≤ 2×10−3 Hz with M = 125, 332 parti-

tions. The spectral estimate of the All Ordinaries (.AORD),

FTSE Italia All-Share (.FTITLMS) and Euro STOXX 50

(.STOXX) is shown in Fig. 8. The high dimensional multi-

variate spectral estimate is subsequently expressed in consid-

erably low dimension with m = 200 cosine basis functions.

The spectral estimate, basis representation and the residual

for the .AORD are shown in Fig. 9 which suggests that the

representation is reasonably good.

By taking the SVD of Φ we determine the number of

principal components as r = 1 and the subspace spanned by

the K = r+1 cluster centroids. The result of clustering in the

subspace is summarized in Fig. 10 which shows two groups

of 7 and 19 members. The group on the left comprises of the

FTSE All-Share (.FTAS), FTSE MID 250 (.FTMC), FTSE

MIB (.FTMIB), .FTSE, German DAX (.GDAXI), NASDAQ

Composite (.IXIC) and NASDAQ-100 (.NDX) while the

group on the right comprises of indices such as the .AORD,

Bats 1000 (.BATSK), Dow Jones Industrial Average (.DJI),

CAC 40 (.FCHI), S&P/TSX Composite (.GSPTSE), Hang

Seng (.HSI), S&P 500 (.INX) etc.

The recursive application of K-means clustering on the

groups identified reveals homogeneity/heterogeneity within

a group which is not obvious in Fig. 10. The result is
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summarized in Fig. 11 which suggests for example that

within the group on the left in Fig. 10, .GDAXI, .IXIC and

.NDX form a group and .FTAS, .FTMC, .FTMIB and .FTSE

form a group. It is interesting to note that the cluster analysis

groups the FTSE indices in one cluster. Similarly, within the

group on the right in Fig. 10, .DJI and the Swiss Market

Index (.SSMI) form a group and .AORD, .HSI and Nikkei

225 (.N225) also form a group.

0 20000 40000 60000 80000

Time (s)

St
oc

k 
M

ar
ke

t I
nd

ic
es

.AORD
.BATSK

.DJI
.FCHI
.FTAS

.FTEU3
.FTITLMS

.FTMC
.FTMIB

.FTSE
.FTSTI

.GDAXI
.GSPTSE

.HSI
.IBEX

.INX
.IXIC
.N100
.N150
.N225
.NDX
.SSMI

.STOXX
.STOXX50

.STOXX50E
.STOXXE

Fig. 7. Raster Plot of Timestamp for Multivariate Tick Data
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Fig. 8. The Spectral Density Estimate for the All Ordinaries (.AORD),
FTSE Italia All-Share (.FTITLMS) and Euro STOXX 50 (.STOXX)

C. Currency Exchange Rates

The exchange rate tick history of major currencies is ana-

lyzed. The data comprise of exchange rates of 156 currencies

against the USD on September 25, 2012. The timestamp is

recorded up to 1ms accuracy. Currencies with at least 300
recordings were analyzed which meant that 55 of the 156
currencies with an average of around 18, 000 recordings per

currency are studied. This was done merely for presentation

of results and is otherwise not a limitation of the proposed

approach. A raster plot of the timestamp for the multivariate

tick history is shown in Fig. 12. The sporadic behaviour

is characteristic of the exchange rate and the significant

lapses in recording illustrate why discrete or continuous time

modeling is inadequate for the multivariate tick data.
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Fig. 10. Clustering in the Subspace of K = 2 Cluster Centroids

The spectral density estimate of the tick history of each

currency was computed using the Lomb-Scargle method for

11.57 × 10−5 < f ≤ 2 × 10−3 Hz with M = 239, 300
partitions. The spectral estimates of the Argentine Peso

(ARS), Singapore Dollar (SGD) and Chilean Peso (CLP)

are shown in Fig. 13. The basis representation with m =
200 cosine elements and the residual for the Chinese Yuan

Renminbi (CNY) are shown in Fig. 14 which demonstrates

the suitability of the cosine basis functions.

The cluster centroid subspace was computed using the

SVD of Φ. The result of clustering is summarized in Fig. 15

which shows 4 groups of 5, 14, 12 and 24 members. The first

group comprises of the Swiss Franc (CHF), Danish Krone

(DKK), Euro (EUR), Moroccan Dirham (MAD) and Swedish

Krona (SEK), mainly the Western European currencies. The

second group comprises of currencies such as the Bulgarian

Lev (BGN), Czech Koruna (CZK), Croatian Kuna (HRK),

Polish Zloty (PLN) and Serbian Dinar (RSD) which are

predominantly Central European currencies. In addition it

includes currencies such as the Australian Dollar (AUD),

Canadian Dollar (CAD), British Pound Sterling (GBP) etc.

The third comprises of the Eastern European currencies such

as the Hungarian Forint (HUF) and the Romanian New Leu

(RON) and South American currencies such as the Brazilian

Real (BRL) and the Columbian Peso (COP) etc., while

the remaining which is the largest group is dominated by

Middle Eastern currencies such as the United Arab Emirates
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Fig. 11. Recursive K-means Clustering

Dirham (AED), Bahraini Dinar (BHD), Omani Riyal (OMR),

Qatari Riyal (QAR) and the Saudi Riyal (SAR) and African

currencies such as the Algerian Dinar (DZD), South African

Rand (ZAR), Lesotho Maloti (LSL), Swazi Lilangeni (SZL)

and the West African CFA Franc (XOF).

Fig. 16 shows the result of recursive K-means cluster-

ing which uncovers homogeneity/heterogeneity within each

group not apparent in Fig. 15. As expected the Middle

Eastern currencies in the largest cluster form a homogeneous

group within the cluster and so on.
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Fig. 12. Raster Plot of Timestamp for Multivariate Currency Tick History
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Fig. 13. The Spectral Density Estimate for the Argentine Peso (ARS),
Singapore Dollar (SGD) and Chilean Peso (CLP)
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Cosine Elements and Residual for the Chinese Yuan Renminbi (CNY)
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VI. NON-NEGATIVITY CONSTRAINT

The model in Section III ignores the non-negativity of

the spectral density. Here we show how the model can be

modified to ensure non-negativity of the spectral estimate

and only sketch the procedure for fitting the non-negative

data due to lack of space. The empirical analysis will be

pursued elsewhere.

Given the d-vector of spectral density �yω =
(ȳ1(w), ..., ȳd(w))

T , suppose ȳk(w) is given by

ȳk(w) = ec̄k+φ̄
T
k ψ̄ω + εω

where c̄k is the mean, ψ̄ω is a m-vector of basis functions, φ̄k
is the m-vector of coefficients and εω is the residual. Note

that the model ensures non-negativity of the data without

explicit constraints in the optimization. The natural approach

is to fit log(�yω) using the procedure in Section III but

log(�yω) is non-smooth as the spectral data approaches zero.

A procedure to fit �yω with the non-negativity constraint is

outlined below.

Rewriting the model above more compactly as

ȳk(w) = eφ
T
k ψω + εω, φk = (c̄k, φ̄

T
k )
T , ψω = (1, ψ̄Tω )

T

and ȳ
(i)
k := ȳk(ωl + iδ), ψi := ψωl+iδ , for a tiny increment

δ, the augmented vector φk is given by the nonlinear opti-

mization φk = argminφk
J with

J = ΣM1
1

2
||ȳ(i)k − eφ

T
k ψi ||2

The gradient and Hessian terms are

∂J

∂φk
= ΣM1 (−ȳ(i)k + eφ

T
k ψi)eφ

T
k ψiψi

∂2J

∂φk∂φTl
= ΣM1 (−ȳ(i)k + 2eφ

T
k ψi)eφ

T
l ψiψiψ

T
i δk,l

Then, the Newton-Raphson φk update step is

φ
(1)
k = φ

(0)
k −

(
∂2J

∂φk∂φTk

)−1
∂J

∂φk

φk, k = 1, ..., d form the columns of ΦT . K-means clustering

can be performed in the cluster centroid subspace of Φ as

outlined in Section IV.

VII. CONCLUSIONS

In this paper we have discussed for apparently the first

time a proper procedure for cluster analysis of multivariate

tick data based on the joint information of the irregular

sampling times and the continuous-valued process observed

at the actual sampling times. The procedure is based on

the Lomb-Scargle method which encodes the information in

the spectral density. The high dimensional spectral density

estimate is given a compact representation using a basis

expansion and clustering is performed in the K-means cluster

centroid subspace of the coefficients matrix which has been

shown to be more robust than clustering in the original space

[3]. A simulation study underscores the problem with the

standard approach which aggregates the multivariate time

series to fixed intervals which not only loses the temporal

information but also blurs any structure in the data rendering

the analysis unreliable. Our proposed approach is free from

such shortcomings and much more reliable in comparison to

the standard approach. The cluster analyses of major world

stock market indices and currencies is discussed in detail.

Future work will consider the non-negativity constraint of

the spectral density and cluster analysis of tick data using

the modified model in Section VI.
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