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ABSTRACT
This paper presents a new approach for mapping task graphs
to heterogeneous hardware/software computing systems us-
ing heuristic search techniques. Two techniques: (1) integra-
tion of clustering, mapping, and scheduling in a single step
and (2) multiple neighborhood functions strategy are pro-
posed to enhance quality of mapping/scheduling solutions.
Our approach is demonstrated by case studies involving 40
randomly generated task graphs, as well as four real appli-
cations including signal processing and pattern recognition.
Experimental results show that the proposed integrated ap-
proach outperforms a separate approach in terms of quality
of the mapping/scheduling solution by up to 18.3% for a
heterogeneous system which includes a microprocessor, a
floating-point digital signal processor, and an FPGA.

1. INTRODUCTION

Hardware/software codesign takes an application specifica-
tion as input, and generates an implementation for a hetero-
geneous computing system that fulfils given performance
criteria. Codesign involves task mapping and scheduling:
the mapping process assigning tasks to processing elements
and the scheduling process determining the execution se-
quence of tasks. This problem is known to be NP-hard in
its general form and some of the works proposed to address
this issue are shown in Table 1.

Constructive heuristic, such as list scheduling, build par-
tial valid solutions until a complete solution is formed. In list
scheduling, each task is assigned a priority based on heuris-
tics, available tasks are scheduled in each iteration based on
the assigned priority. Examples of such heuristics are criti-
cal path [1] [2], job length [3]. Another approach is deter-
ministic method, which searches the solution space exhaus-
tively. This method guarantees optimal solution but is not
scalable. An example of such method is integer linear pro-
gramming [4]. Heuristic search techniques are also applied
to tackle the mapping and scheduling problem. In [5], the
mapping process uses a genetic algorithm without consid-
ering scheduling. Tabu search has been applied to find the

best mapping while a list scheduling method estimates the
total execution time [6]. Similarly, in [7], genetic algorithm
is applied. The impact of different heuristic search methods
on mapping/scheduling quality and search time have also
been analyzed [8]. In all of these approaches, mapping and
scheduling are considered independently in two steps, and
heuristic search techniques are only applied to the mapping
process. Since mapping results affect scheduling results and
vice versa, separate schemes lead to sub-optimal solutions.
In the integrated approach, each processor is assigned an
ordered list of tasks to be executed. Mapping and schedul-
ing are combined as a single process that assigns tasks to
specific locations of lists. One possibility is to assume that a
hardware processor always executes a task faster than a soft-
ware processor, so all tasks are initially allocated in software
processor and then moved from software to a hardware pro-
cessor to minimize the total execution time [9]. Heuristic
search techniques [10] are also used to move tasks between
lists iteratively and the best mapping/scheduling solution is
found via a search.

Compared with a separate approach with independent
mapping and scheduling, an integrated approach covers a
larger search space that results in a higher chance of cov-
ering good solutions. However, the extended search space
can also increase the difficulty of finding good solutions, es-
pecially in problems that involve complex applications and
heterogeneous computing systems. Most of previous heuris-
tic search based approaches only apply a standard model,
effects of different configuration of such techniques are less
extensively addressed. Moreover, only mapping and schedul-
ing are integrated [10] [14]. Our main contributions are as
follows:

• Integrating clustering, mapping, and scheduling in a
single step.

• A strategy with multiple neighborhood functions to
enhance the quality of mapping/scheduling solutions.

• An analysis of different neighborhood functions and
two heuristic search techniques, simulated annealing
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Table 1. Some approaches to address mapping/scheduling.

references approach examples of applications comments

[1] [2] list scheduling
random graphs critical path based,

tracking algorithm for homogeneous architecture

[11] list scheduling FFT
scheduling based on depth of task and number

of successors, for MONTIUM architecture

[3] list scheduling navigation system shortest job first

[9] iteratively moving random graph
iteratively move critical task from

software processor to hardware processor

[5] [12]
genetic algorithm

random graphs address mapping only
simulated annealing

[6] [7] [13]
heuristic search +

random graphs, FFT, JPEG divide mapping/scheduling into two steps
lish scheduling

[10] [14] heuristic search mean value analysis, FFT
address software processor only

mapping + scheduling

[4] integer linear programming filtering for VLIW architecture only

this work heuristic search
40 random graphs

clustering + mapping + scheduling
5 applications

and tabu search.

In the following, Section 2 provides an overview of mul-
tiple neighborhood functions and their use in search tech-
niques. Section 3 covers the formulation of the integrated
mapping/scheduling problem. Section 4 describes the pro-
posed methodology and the associated reference architec-
ture, neighborhood functions, and cost function. Section 5
presents the experimental setup and the results. Section 6
contains concluding remarks.

2. MULTIPLE NEIGHBORHOOD FUNCTIONS

The basis of heuristic search techniques is neighborhood
search, which starts with a feasible solution and attempts
to improve it by searching its neighbors, i.e. solutions that
can be reached directly from the current solution by an op-
eration called a move. Simulated annealing accepts not only
neighbors that improve on the previously best solutions, but
also those increases the cost. The probability of accepting
a neighbor is defined as: p = exp((cost(b)− cost(c))/T ),
where b is the best neighbor and c is the current neighbor, T
is called the temperature and is updated as: Tnew = αTold,
where α is a constant and typically in the range of 0.9 to
0.99.

Instead of using single neighborhood function, a strat-
egy involving multiple neighborhood functions is proposed.
Initially, a feasible solution is generated and a neighborhood
function is chosen to generate a new neighbor. If the new

neighbor yields lower cost than the best previous solutions,
it is accepted, i.e. a move from previous solution to the new
one. Otherwise, acceptance of this new neighbor depends
on the probability function. If there is no improvement af-
ter iterating a given number of times, a new neighborhood
function is chosen to replace the old one. In this work, two
neighborhood functions are used alternately, and the search
ends when neither neighborhood function produces better
solutions.

Tabu search keeps a list of the searched space and uses it
to guide the future search direction; it can forbid the search
moving to some neighbors. In the proposed tabu search
based on multiple neighborhood functions, after an initial
solution is generated, two neighborhood functions are used
to generate neighbors simultaneously. If there exists a neigh-
bor of lower cost than the best solution so far and it cannot be
found in the tabu list, this neighbor is recorded. Otherwise
a neighbor that cannot be found in the tabu list is recorded.
If all the above conditions cannot be fulfilled, a solution in
the tabu list with the least degree, i.e. a solution being resi-
dent in the tabu list for the longest time, is recorded. If the
recorded solution has a smaller cost than the best solution so
far, it is recorded as the best solution. The searched neigh-
bors are added to tabu list and solutions with the least degree
are removed. This process is repeated until the search cannot
find a better solution for a given number of iterations.
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3. PROBLEM FORMULATION

3.1. Directed acyclic graph

In this work, it is assumed that an application is described
by a directed acyclic task graph (DAG), which is used as in-
put to the mapping/scheduling process. Given a set of tasks
TK = {tk1, tk2, ..., tkn} to be executed, a directed acyclic
graph can be defined as G = (TK, DF ). Each task tki is
a node in the graph and DF = {dfij ; i = 1, 2, ..., n; j =
1, 2, ..., n} is a set of directed edges corresponding to data
flow dependencies between tasks. Each edge dfij ∈ DF
denotes an amount of data flow from task tki to tkj , so tki

is a predecessor of tkj , and conversely, tkj is a successor
of tki. The number of nodes and edges are defined as |TK|
and |DF | respectively. Given a set of interconnected het-
erogeneous processing elements PE = {pe1, pe2, ..., pem},
each task node tki of the task graph is associated with a set
{ti1, ti2, ..., tim} that denotes the execution times for imple-
menting this task on each processing element of PE. The
time to transfer results between tasks can be represented as
DT = {dtij ; i = 1, 2, ..., n; j = 1, 2, ..., n}, each dtij de-
noting the time to transfer results from task tki to tkj . This
is calculated as the amount of data flow dfij divided by the
data transfer rate.

3.2. Integrated mapping/scheduling

Given a set of task lists PL = {pl1, pl2, ..., plm}, where
plj = (asj1, asj2, ..., asjq) is an ordered task sequence to
be executed by processing element pej , each task in plj will
be processed by pej in sequence when it is ready for exe-
cution, when all its predecessors are finished. Task mapping
and scheduling thus deal with assigning tasks to task lists. A
task assignment function is defined as A: TK → PL, e.g.
A(tki) = asjk denotes task tki being assigned to asjk of
list plj . This means that tki is the kth task to be executed
by processing element pej . A mapping/scheduling solution
is characterized by assignments of all tasks to processing el-
ements, i.e. for every task tki ∈ TK , A(tki) = asjk for a
plj ∈ PL. It is assumed that only one task can be assigned
to each asij .

In this work, a directed acyclic task graph is used as
input to the mapping/scheduling process which adopts an
integrated strategy. Simulated annealing and tabu search
based on multiple neighborhood functions are then applied
to modify the task assignment and generate mapping/schedul-
ing solutions iteratively. Based on each solution, an overall
processing time, the time to finish all tasks, is calculated and
used as the cost to guide the heuristic search. The goal is to
find a solution with minimum overall processing time.

4. METHODOLOGY

4.1. Reference architecture

The reference heterogeneous computing system contains three
processing elements: one microprocessor, one FPGA, and
one DSPU, which are fully connected. Each processing el-
ement has a local memory for data storage during task exe-
cution, and each communication channel between two pro-
cessing elements is being assigned a weight which specifies
the data transfer rate. Results of a task’s predecessors must
be transferred to the local memory before this task starts ex-
ecution. The method proposed in this work is not limited
to this architecture, this reference architecture is just used to
evaluate the performance of difference approaches.

4.2. Neighborhood functions

Given that s denotes current mapping/scheduling solution,
the following five basic neighborhood functions NFx(s)
are adopted:

NF1: random-relocation
(1) Randomly select a task at list plp position aspq .
(2) Randomly select another task at list plj position asjk.
(3) Relocate task from (plp, aspq) to (plj , asjk).
(4) Relocate largest data flow parent of task (plp, aspq)

to a position in plj which yields lowest cost.
NF2: guided-relocation

(1) Randomly select a task at list plp position aspq .
(2) For all lists plj ∈ PL and positions asjk: relocate task

(plp, aspq) to (plj , asjk) which yields lowest cost.
(3) Relocate largest data flow parent of task (plp, aspq)

to a position in plj which yields lowest cost.
NF3: random-swap

(1) Randomly select a task at list plp position aspq .
(2) Randomly select another task at list plj position asjk.
(3) Swap task in (plp, aspq) with task in (plj , asjk).

NF4: guided-swap
(1) Randomly select a task at list plp position aspq .
(2) For all lists plj ∈ PL and positions asjk: swap task

(plp, aspq) with task (plj , asjk) which yields
lowest cost.

NF5: best-relocation
For all lists plp ∈ PL and positions aspq:
relocate task (plp, aspq) to every list plj ∈ PL
and position asjk, choose the relocation which yields
lowest cost.

Based on the observation that mapping tasks with large
data flow to the same processing element can potentially re-
duce data transfer overhead, clustering techniques, which
group tasks with large data flow together and allocate them
to the same processing elements have been proposed [6].
However, clustering, mapping, and scheduling are solved
separately in previous work, which may result in sub-optimal.
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This work proposes two new neighborhood functions (NF1
and NF2) which integrate the clustering technique into the
neighbourhood function, i.e. after relocating a task, move
the largest data flow parent, which has the largest data flow
among all parents of the current task, to the same process-
ing element. If such movement yields lower cost, accept this
move and generate a new neighbor, otherwise, discard it.

One more neighbourhood function NF5, which uses a
best-relocation strategy [10], is also analysed. This neigh-
bourhood function searches all possible relocations for all
tasks, and choose the one yield lowest cost as new neighbor.

4.3. Cost function

As mentioned before, overall execution time is used as the
cost to guide the heuristic search. This is the time for pro-
cessing all tasks using the reference heterogeneous comput-
ing system and includes data transfer time. The processing
time of a task tki on processing element pek is calculated
as the execution time of tki on pek plus the time to retrieve
results from all of its predecessors. The data transfer time
between a task and a predecessor is assumed to be zero if
they are assigned in the same processing element.

It is noted that tasks cannot be randomly moved to any
location due to data dependency, i.e. a task cannot be moved
to a location such that it will execute prior to its predecessor.
To avoid generating infeasible solution, our approach inflicts
a huge penalty cost if such move is infeasible.

5. RESULTS

5.1. Experimental setup

The neighborhood size for the tabu search is 10 and the tabu
list length is 10, the search would terminate if it cannot find
a better solution after 200 iterations. In simulated anneal-
ing, the cooling rate α is 0.99, and it changes neighborhood
function if current function yields no improvement after 200
iterations. The overall processing time using a single CPU
is divided by the overall processing time using the reference
heterogeneous computing system to obtain a speed up (SU):

SU =
overall processing timesingle CPU

overall processing timeReference system

(1)

Solution quality is used to measure the performance of
different experimental setups, it is defined as follows:

• Solution quality: Each experimental setup is run for
a given duration (time constraint) and the best speed
up (BSU) is recorded. An average BSU (ABSU) of N
runs is calculated and used as quality measure, which
represents the quality of solutions a particular exper-
imental setup can find. A higher ABSU value means
the solution quality is higher.

Table 2. Solution quality using tabu search.
Combinations of Number of task

neighborhood functions 10 30 50 80

(NF1 only) 3.34 5.59 5.23 4.75
(NF2 only) 3.34 6.45 6.82 6.81
(NF3 only) 3.07 3.81 3.08 3.05
(NF4 only) 3.10 4.35 3.70 3.30
(NF5 only) 3.34 5.43 5.00 3.41

(NF1, NF3) 3.34 5.41 4.92 4.32
(NF1, NF4) 3.34 6.45 6.91 7.08
(NF2, NF3) 3.34 6.42 6.62 6.57
(NF2, NF4) 3.34 6.51 7.04 7.17
(NF1, NF2) 3.34 6.40 6.62 6.55
(NF3, NF4) 3.07 4.63 3.94 3.47

Table 3. Solution quality using simulated annealing.
Combinations of Number of task

neighborhood functions 10 30 50 80

(NF1 only) 3.24 5.74 5.90 5.60
(NF2 only) 3.34 6.37 6.59 6.50
(NF3 only) 2.98 4.56 4.51 4.22
(NF4 only) 3.04 4.90 4.17 3.65
(NF5 only) 3.34 5.78 5.57 5.49

(NF1, NF3) 3.29 6.21 6.52 6.45
(NF1, NF4) 3.28 6.28 6.72 6.86
(NF2, NF3) 3.34 6.44 6.77 6.67
(NF2, NF4) 3.34 6.46 6.86 7.01
(NF1, NF2) 3.34 6.37 6.48 6.37
(NF3, NF4) 2.99 4.83 4.70 4.07
(NF3, NF1) 3.34 6.44 6.73 6.64
(NF4, NF1) 3.32 6.28 6.60 6.75
(NF2, NF1) 3.34 6.36 6.63 6.50

5.2. Random graphs

Directed acyclic graphs with 10, 30, 50, and 80 tasks are
analyzed. 10 instances of each graph size are generated ran-
domly so there are a total of 40 graphs. Experimental results
are obtained from 10 runs in each problem instance. Tables 2
and 3 show the solution quality obtained using integrated
approach with tabu search and simulated annealing respec-
tively. The results of using the strategy with two neighbor-
hood functions are designated by the notation (NFa, NFb).
For simulated annealing, this notation also denotes the order
to choose neighborhood function: NFa is used first to gen-
erate neighbors, changing to NFb if there is no improve-
ment after 200 iterations. The notation (NFa only) means
using a single neighborhood function NFa.

In Table 2, among the four neighborhood functions NF1
to NF4, NF2 achieves the highest quality: its value is
twice as much as others for most problem instances. Sim-
ilar results are obtained when simulated annealing is used
(Table 3). A quality comparison between different neigh-
borhood functions is shown in Figure 1. It is found that tabu
search outperforms simulated annealing, and using a strat-

278

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 3, 2009 at 21:51 from IEEE Xplore.  Restrictions apply.



 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50  60  70  80  90

So
lu

tio
n 

qu
al

ity

Number of tasks

(NF2 only) with simulated annealing
(NF2, NF4) with simulated annealing

(NF2 only) with tabu search
(NF2, NF4) with tabu search

Fig. 1. Comparison of solution quality (speedup in regards
to single CPU execution) between different neighborhood
functions of integrated approach using random graphs.

Table 4. Comparison of solution quality between different
works using random graphs. SEP: separate approach, INT:
integrated approach.

Number of task 10 30 50 80

SEP,TABU [6] 3.31 5.89 6.23 6.17
INT,TABU,(NF5, only) [10] 3.34 5.43 5.00 3.41

INT,TABU,(NF2, NF4) 3.34 6.51 7.04 7.17

egy with two neighborhood functions yields higher qual-
ity than a single neighborhood function. The improvement
is more significant for larger problem size. In Figure 1,
tabu search with (NF2, NF4) achieves the highest quality,
which is actually the highest among all experimental setups
chosen in this work; this strategy is used later in our experi-
ments using real applications (Section 5.3).

Table 4 shows a solution quality comparison between
this work and other approaches: a best-relocation based in-
tegrated approach [10], and a separate approach proposed in
[6], where tabu search is found to yield best performance.
Our approach outperforms both approaches in all problem
instances. The improvement is more significant for larger
problems: it is 16.2% higher than the separate approach and
110% higher than the best-relocation based approach for the
case with 80 tasks.

5.3. Task graphs for real applications

Apart from random graphs, the commonly used butterfly
structure for the fast Fourier transform (FFT) [15] is used
as an additional example. A 32-point FFT containing 80
butterfly nodes with each node regarded as a single task is
used. The execution time of each node is measured for pro-

Table 5. Solution quality for different search time con-
straints using FFT.

Time constraint (s) 10 30 50

SEP,TABU [6] 5.37 5.47 5.57
INT,TABU,(NF5, only) [10] 2.17 2.36 2.57

INT,TABU,(NF2,NF4) 5.6 5.97 6.13
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Fig. 2. Solution quality comparison for various applications

cessing 1.0 × 107 32-point FFTs, and the communication
speed is assumed to be 1.0 × 108 data elements per sec-
ond. For an Intel Pentium-4 3.2GHz microprocessor and
an Atmel mAgic floating-point digital signal processor the
execution times of each node are 384 ms and 100 ms re-
spectively. A fully pipelined architecture for the butterfly
node has been developed for a Xilinx Virtex-II XC2V6000
FPGA using the Haydn design-flow [16] and the execution
time for this architecture is 91 ms. Table 5 illustrates the so-
lution quality of 20 runs for each setup. One can see that us-
ing integrated approach with tabu search and (NF2, NF4)
achieves higher value; it shows that this setup is capable
of finding better solutions. The maximum improvement is
10.0% higher than the separate approach and 138.5% higher
than the best-relocation based approach for 50-second con-
straint.

Besides FFT, three other applications are employed to
evaluate the proposed approach; these include FIR filtering,
matrix multiplication, hidden Markov model (HMM) decod-
ing for pattern recognition. Figure 2 illustrates the solu-
tion quality comparison given a 30-second search time con-
straint, the proposed multiple neighbourhood function strat-
egy outperforms the other two approaches in all cases, the
corresponding improvements over the separate approach are
18.3%, 13.2% and 4.5% respectively. The improvement for
HMM is less significant; one reason is that the amount of
data flow is smaller in this application, so the penalty of in-
appropriate task mapping using the separate approach is also
less significant.
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6. CONCLUSIONS

An integrated hardware/software codesign approach using
the multiple neighborhood functions strategy is presented,
where clustering, mapping, and scheduling are integrated
in a single step. It is found that the guided-move based
clustering approach outperforms other neighbourhood func-
tions and the solution quality can be further improved using
the multiple neighbourhood functions strategy. In particu-
lar, using tabu search with (NF2, NF4) achieves the high-
est quality. Experimental results obtained using both ran-
domly generated task graphs and four real applications show
that the proposed codesign approach with multiple neigh-
borhood functions is superior to previous approaches in qual-
ity by up to 18.3%.

Current and future work includes extending our approach
to cover task graphs which are not acyclic, and exploring op-
portunities for carrying out mapping and scheduling at run
time.
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