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A Low-Power VLSI Arrhythmia Classifier

Philip H. W. Leong, Member, IEEE, and Marwan A. Jabri, Senior Member, IEEE

Abstract—The design, implementation, and operation of a low-
power multilayer perceptron chip (Kakadu) in the framework of
a cardiac arrhythmia classification system is presented in this
paper. This classifier, called MATIC, makes timing decisions
using a decision tree, and a neural network is used to identify
heartbeats with abnormal morphologies. This classifier was de-
signed to be suitable for use in implantable devices and a VLSI
(very large scale integration) neural-network chip (Kakadu) was
designed so that the computationally expensive neural-network
algorithm can be implemented with low power consumption.
Kakadu implements a (10, 6, 4) perceptron and has a typical
power consumption of tens of microwatts. When used with the
arrhythmia classification system, the chip can operate with an
average power consumption of less than 25 nW.

1. INTRODUCTION

N implantable cardioverter defibrillator (ICD) is a device

which monitors the heart and delivers electrical shock
therapy in the event of a life-threatening arrhythmia. Central to
the success of such a device is the reliability of the arrhythmia
classification algorithm.

Current ICD’s perform classification with the main criterion
being the heart rate measured from a single lead. These
methods have been found to be unreliable in their classification
of many common arrhythmias, often causing inappropriate
therapy to be delivered [1]. Most of the incorrect classifications
made by current devices are caused by the overlap of heart rate
ranges between the various arrhythmias.

Any classifier used in an ICD must also be implementable
with very low power consumption. This is because battery
life inside an ICD must be of the order of five years and the
classifier must consume as little power as possible. Although
many excellent algorithms for arrhythmia classification already
exist, they are usually computationally expensive and hence
are not suitable for use in implantable devices.

This paper describes the implementation of a hybrid deci-
sion tree/neural-network algorithm for classifying arrhythmias.
This algorithm, called MATIC, has been shown to have
improved performance over existing algorithms [2], how-
ever, neural networks are very computationally expensive. To
achieve low power consumption, an analog subthreshold VLSI
(very large scale integration) implementation of the neural
network was made. The described architecture enables one
to keep the benefits of a powerful morphology classification
algorithm yet maintain low power consumption.
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Section II describes the neural network VLSI chip (Kakadu)
which was designed to perform the morphology part of the
MATIC system. A comparison of various training algorithms
and their ability to train the Kakadu chip is made in Section
III. In Section IV, examples of Kakadu applied to simple
classification problems are described. Section V describes the
MATIC algorithm and the system’s performance when applied
to a large database of arrhythmias. Finally, a brief discussion
followed by conclusions on this work are presented.

II. KAKADU MLP CHIP

The Kakadu chip was implemented using low-power analog
techniques because they have the following advantages:

» Subthreshold analog circuits enable implementations
which consume very little energy,

e They are easily interfaced to the analog signals in an
ICD (in contrast to digital systems which require analog
to digital conversion),

» Analog circuits are generally small in area,

« Fully parallel implementations are possible, and

» A certain amount of fault tolerance may be exhibited by
the neural network.

A. Architecture

Kakadu implements an artificial neural network based on
the multilayer perceptron model [3]. A block diagram of the
chip is shown in Fig. 1. The chip takes voltage inputs and
passes them through the first array of synapses to produce six
pairs of hidden layer currents. These currents are converted
to voltages using linear resistors that are external to the chip.
The same nodes are used as voltage inputs to the next layer
which produces output currents which are converted to voltage
outputs by the third neuron layer.

The main blocks of the chip are two synapse arrays, a
current source, and weight addressing circuitry. The synapse’s
digital-to-analog converters are binary weighted current
sources which are controlled by digitally stored weights.
A common current source is used to supply bias voltages
to synapses in each digital-to-analog converter (DAC). The
circuit can be operated over a wide range of bias currents.

Although inputs to the neural network are analog, synapse
values are written digitally. This enables configuration of the
chip to be performed digitally but keeps the actual signal
processing in the analog domain. The synapse array appears
as an 84—word RAM (the first layer having 10 x 6 words and
the second layer having 6 x 4 words) with a six-bit word size.
Synapses are addressed by row and column through pairs of
multiplexed row and column shift registers.

1045-9227/95$04.00 © 1995 IEEE
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are 6.63 nA, and all of the n—transistors on the bottom of the circuit are the
same size so I = Ii,.
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B. Implementation

Current Source: A single current source is used to provide
biases for all synapses of the chip. The current source (Fig. 2)
is constructed by summing unit current sources. For transis-
tors with uncorrelated matching properties, summing N unit
current sources improves the matching by a factor of VN [4].
Correlated matching properties such as changes in doping or
oxide thickness are addressed by arranging the current sources
in a common centroid configuration [4]. Large (553 pm?)
transistors are used for the current source although smaller
(81 pm?) transistors are used inside the DAC’s to keep the
total synapse area small.

The bias current is controlled by an off-chip current or volt-
age. Since all of the currents feeding the synapses are derived
from this single input, the entire circuit can be switched off
by making [;,, equal to zero. The current source can operate in
either strong inversion or subthreshold mode, depending on the
magnitude of the bias current. In the experiments, subthreshold
operation was used.

Synapse: The synapse is composed from registers which
store the weight values, a linear DAC, and a transconductance
multiplier. The bias current is the same as the unit current for
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the DAC so each DAC can output +31 times the bias current.
A circuit diagram of the synapse is shown in Fig. 3.

Since synapses are the most numerous elements in a neural
network, the size of the network that will fit in a given area
is controlled by their dimensions. Although small synapses
are required, the matching of crucial transistors (the five
mirror transistors connected to I0-I4) within the synapse is
proportional to the square root of the transistor area and
so these transistors should be made as large as possible. A
compromise was reached in selecting 81 pm? transistors for
the 10 to I4 mirrors within the synapse.

Storage of the synapse values is achieved using registers,
the value of which are converted to analog values via a DAC.
To achieve a small synapse area, the registers were designed
to be as narrow as possible since each register contains six
flip-flops.

The DAC is constructed through current summing. Each bit
of the DAC is controlled by a pass transistor which can be
turned on or off depending on the value stored in the (static)
input flip-flop (B0-B4). 10-14 are voltages taken from the
current source which serve to bias the currents in powers
of two. B5 is used to encode the sign and is included in
the synapse rather than the DAC. The entire synapse array
appears as a large (write only) register to the controlling digital
circuitry which programs the weight values.

The DAC is connected to a transconductance multiplier to
form a synapse. The multiplier has a pair of voltage inputs, a
current input (from the DAC), and a pair of current outputs.
The transfer function of this multiplier is given by the relation

S {+1DAC tanh (22Y=))  if BS=1 M
outt T out= T | —Ipac tanh (22 Y=)) if B5=0.

The multiplier is linear with the current inputs (from the
DAC) and nonlinear to the neuron voltage inputs. This is the
desired situation as if they were reversed, the tanh function
would only serve to compress the range of weight values
available and would not allow nonlinear problems to be solved.
The DAC only produces positive values. Current switching
logic controlled by BS enables the output to be changed in
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sign if a negative weight is desired. The 'V, and V_ inputs
are from either neurons or input pins. OQutput of the multiplier
are two current sinks.

_ The area of a synapse in 1.2 pm double metal, single poly
nwell technology is 106 x 113 um which includes all of the
weight storage registers and switches, I0-14 current mirrors,
multiplier, and sign switching circuitry. A neural network
can be constructed from a single current source (described
in Section II-B) and a synapse array. A larger, single layer
version of Kakadu has been designed, which contains a 50 x 50
array of synapses, current source, and weight addressing logic
on a 7.2 X 7.2 mm die.

Neurons: In a low-power system, where the neuron input
current can be of the order of 10 nanoamps (nA), a high
impedance of the order of 1 MQ is required. This is hard
to implement in standard metal-oxide semiconductor (MOS)
technology because diffusion and polysilicon do not have the
high resistance necessary, and an active circuit with the desired
transfer characteristic is difficult to design. If on-chip neurons
are used, a method of measuring the activation of at least
the output neurons is required for training, and this requires
buffers to drive the signals off chip.

A possible solution to this problem is to implement the
neurons using off-chip resistors. The resistors are provided
off chip to allow easy control of the impedance and transfer
characteristics of the neuron. The neurons also serve as test
points for the chip. It is envisaged that these neurons will later
be integrated onto the chip using either an active circuit or
a high resistance material such as that used in a static ram
process. Since the neurons are implemented externally to the
chip, nonlinear neurons can also be used. :

A resistor, however, has a linear characteristic which, at
first glance, appears unsuitable. This problem was addressed
by implementing the nonlinear characteristic required by the
neural network in the synapse instead of the neuron. Using this
technique, the nonlinearity of the Gilbert multiplier is used to
an advantage.

The linear neurons mean that the transfer function of the
Kakadu network are proportional to that of the synapses alone,
and the transfer function is

N,

wi =) wiifi(e;) @
i=1

a; = au; 3

where u; is the summed output of the synapses, a; is the
neuron output, x and o are constants, [ denotes the [th layer

(0 <1< L-1), L is the total number of layers (namely"

2), N; is the number of neuron units at the Ith level i is the
neuron number (1 < ¢ < V), and fi(z) = tanh(%E).

For a two-layer network, (3) is very similar to the typical
multilayer perceptron model as illustrated in Fig. 4. Any set
of inputs can be scaled so that they are within the linear
range of fi(x) and so the initial nonlinearity applied by fo(z)
(i.e., fi(z) where | = 0) does not change the computational
capability of the circuit. There is an absence of a nonlinearity
in the final layer, and this can be thought of as a linear
output unit. Equation (3) can thus be rewritten in the familiar
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Fig. 4. Comparison between the Kakadu architecture and a multilayer per-
ceptron. The nonlinearity is depicted by the circles and lines represent
synapses.

multilayer perceptron form

N,

u; = Z Wi aj 4
1=1

a; = gi(u;) 5)

where go(z) = atanh(%?), g1(z) = az, and it is assumed
that the inputs have been initially passed through go(z).

As shown in Section IV, this does not affect the neural
network’s ability to solve highly nonlinear problems such as
exclusive or (XOR) and the parity problems. The disadvan-
tages of using off-chip neurons are that since the currents must
travel through pins so pin leakage may affect the circuit and
also, for larger networks, the number of pins required may
become excessive. The larger parasitic capacitances associated
with the neurons also reduce the bandwidth and possibly
increase the power consumption of the system. It should also
be noted that all analog VLSI neural network implementations
have limited input and output ranges since they are (at best)
bound by voltage and current restrictions imposed by the
supplies.

Kakadu MLP Chip: Kakadu was fabricated using Orbit
Semiconductor’s 1.2 pm double metal, single poly nwell
process. A photomicrograph showing the main synapse blocks,
row shift registers, and the current source is shown in Fig. 5.
Kakadu has 10 input, six hidden, and four output neurons and
hence is called a (10, 6, 4) neural network. It can implement
any smaller network than (10, 6, 4) by setting unused synapse
values to zero. A summary of the major chip features is
shown in Table L

C. Chip Testing

Jiggle Chip Tester: The Kakadu chip was tested using the
“Jiggle” test jig [S]. Jiggle was designed at the University
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Fig. 5. Photomicrograph of Kakadu MLP chip.

TABLE 1
KakabU MLP CHIP SUMMARY

Technology 1.2um double metal, single poly nwell
Chip Size 2.2 x 2.2 mm

Synapses 84 x 6 bit MDAC

Power Supply 3v

Power Consumption 254W (typical)

Power Consumption 25nW (duty-cycled)

Rise Time (0.2V swing into 2pF) | 30us

of Sydney, Australia, and is a general purpose chip tester
having 64 12-bit analog input—output channels as well as 64
digital input-output channels. Jiggle connects to a VME bus,
and the versa module eurocard (VME) cage is interfaced to a
Sun SPARCstation IPC via a Bit3 Model 466 SBUS to VME
converter.

Jiggle allows arbitrary analog or digital signals to be pre-
sented to the pins of the test chip and thus allows software
control of the weight updating and training of the Kakadu
chip. For the experiments described below, a supply voltage
of 3V, a bias current of 6.63 nA, and neuron values of 1.2
MQ were used.

MDAC Linearity Test: The transconductance multiplier
used in the Kakadu MDAC has a transfer function described
by (1). The output of the DAC (Ipac in Fig. 3) is equal to
Tout+ — Inue— (1) and so for fixed input voltages the equation
can be simplified to

Ious = Blpac ©
where 3 is a constant and

+3502¥B; ifB5=1

; if BS = 0.

Ipac = { ™
=2 k=0 ZkB,-

I,y is connected to a neuron (a 1.2 M pullup resistor),_

and so the output can be measured as a voltage. Plots of the
(measured) MDAC linearity for three bias currents are shown
in Fig. 6. One can see that monotonicity is not achieved for
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Fig. 7. Synapse transfer function.

the bias current of 6.63 nA (at which the chip is operated). The
two points at which it is not monotonic are when the absolute
value of the DAC input changes from 15 to 16 and is hence
due to the most significant bit current source. At 15.9 nA,
however, the DAC is monotonic. Training is used to account
for the nonlinearity of the DAC.

Synapse Transfer Function: The synapse followed by a
neuron has a transfer function described by

V;)ut = R(Iout+ - Iout—) (8)

where R = 1.2 x 10° and (Ious — Ioue) is given by (1).
A curve fit was used to find « (26.0719), and a plot of the
measured and expected synapse transfer function can be seen
in Fig. 7.

Power Consumption: It is useful to be able to estimate the
power consumption of a chip like Kakadu. This is a function
which is linear with the weight values since Ipac in Fig. 3
is the current drawn for that particular synapse. A number of
current consumption measurements were made for different
weight values and then a least-squares fit was used to derive



LEONG AND JABRI: A LOW-POWER VLSI ARRHYTHMIA CLASSIFIER
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the current consumption formula

N

Ixakapy = 0.842+0.00736 Y " |wi| (uA)  (9)
=0

where w; is the ith weight, ; indexes through all of the weights
in the chip, and Ik sk ADU is the current consumption in pA.

Fig. 8 shows the measured current dissipation of the chip
and the curve fit of (9) to this data. Note that the maximum
power consumption (60 W) of this chip occurs when all the
weights are set to the maximum value.

III. COMPARISON OF TRAINING ALGORITHMS

Training of analog neural-network chips is much harder
to achieve than their digital counterparts. Mismatch of tran-
sistors, nonperfect transistor models, and noise means that a
mathematical formula for the neural-network transfer function
cannot be attained, and thus a formula for the gradient also
cannot be reliably computed.

The training problem can be posed as an optimization
problem in which a function, f(w) can be defined as

Fw) =Y (£ f(w,p) - o(p))2 (10)

where p = input patterns, ff = Kakadu feedforward function,
w = weights, o(p) = desired output for pattern p, and the
optimization task is to minimize f(w).

Training is achieved by using the chip in feedforward mode,
with the chip interfaced to a computer via Jiggle. An initial set
of weights are written to the chip, and the training vectors are
applied in turn to compute f (w). The weights are updated
by the training rule to minimize f(w), and this procedure
repeated until the error reaches a sufficiently low value. In
all of the training experiments, the error termination condition
was that the mean-squared error divided by the number of
training patterns must be less than 1 x 10—2.

FORM (m, s) ARE THE MEAN AND STANDARD DEVIATION VALUES

. TABLE II
TRAINING ALGORITHM COMPARISON (BATCH MODE). ALL NUMBERS OF THE

Algorithm

Iterations

Training Error

Converged

bp

(1.27e+03, 5.60e+02)

{1.42¢-03, 1.98¢-03)

14

cprs

(1.63¢+03, 3.48¢+02)

(7.85¢-04, 6.78e-04)

12

csa (3.52e+01, 1.84¢+01) | (3.366-04, 4.79¢-05) 20
sa-only | (1.52e+02, 8.27e+01) | (3.08¢-04, 8.22¢-05) 19
sa (8.83¢-+01, 8.10e+01) | (3.51e-04, 5.30-05) 20
sed (2.00e+03, 0.00¢-+00) | (1.45¢-03, 6.13¢-04) 0

swnp

(1.34e+03, 3.45¢+02)

(4.32¢-04, 2.360-04)

18

wp

(4.66e+02, 1.62¢-+02)

(3.58¢-04, 2.61e-05)

20
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Several techniques were used to train Kakadu by minimizing
(10). A comparison between different training algorithms is
given below. An extensive set of experiments were performed
to assess the capabilities of the Kakadu architecture in terms
of training and generalization performance, and to compare
the speed of various training algorithms. The algorithms used
were:

BP Backpropagation. The gradient calculation
were derived from (3).

CPRS  Constant perturbation random sign [6].

CSA Combined search algorithm as described in
Section IV-1.

SA-only Pure simulated annealing.

SA Combined search algorithm with simulated
annealing instead of the partial random
search.

SED Stochastic error descent [7].

SWNP  Summed weight neuron perturbation [8].

WP Weight perturbation [9].

A complete description of the training experiments has
been reported [10], and a summary of the relevant results are
presented here. Note that WP is sequential with respect to the
weights, whereas SWNP, SED, and CPRS are parallel weight
perturbation methods.

The training problem was that of ICEG morphology clas-
sification. The training set consists of eight QRS complexes
taken from a single patient (four VT 1:1 and four NSR). The
testing set consists of 220 patterns (150 VT 1:1 and 70 NSR).
Each experiment was repeated 20 times with different starting
conditions.

A. Batch Traim'ng

Tables II and III show the performance of batch mode
training, where weight updates were computed for each pattern
and applied when all patterns have been processed. The
maximum number of iterations was set to 2000. The results
show that in batch mode, Kakadu can be trained to produce
very good generalization performance.

B. On-line Training

Tables IV and V show the performance of the training in
online mode, where weight updates are computed for a given
input pattern and then applied before the consideration of the
next pattern. The maximum number of iterations was set to
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TABLE III
TESTING COMPARISON (BATCH MODE). ALL NUMBERS OF THE FORM
(m, s) ARE THE MEAN AND STANDARD DEVIATION VALUES

Algorithm | Testing Error Correct (%)
bp (1.18e-03, 1.39¢-03) | (82, 28)
cprs (5.55¢-04, 7.61e-04) | (89, 15)
csa (3.28¢-04, 3.93¢-04) | (96, 6)
sa—only (7.46e-04, 5.91e-04) | (91, 8)
s (1.08¢-03, 1.060-03) | (87, 13)
sed (9.13e-04, 6.69¢-04) | (81, 15)
swnp (2.51e-04, 1.69¢-04) | (96, 4)
wp (3.80¢-04, 1.69¢-04) | (95, 3)

be 1000. The combined search algorithms (CSA, SA, and SA-
only) do not appear in the tables since they work only in batch
mode. As can be seen from the table, all algorithms are capable
of training Kakadu with very good generalization performance.

C. Discussion on Training

All the training algorithms tried were successful in training
Kakadu in batch or online mode, or both. The algorithm
that was most successful in both batch and online mode
was sequential WP. None of the online methods managed to
converge every time. :

Of the batch algorithms CSA, SA-only, SA, and WP con-
verged in all cases. Of these four algorithms that converged
every time, CSA had the best generalization performance.

Since only six bit weights are used, the limited range and
resolution of the weights make (10) discontinuous and hence
difficult to train. These training results show, however, that
reliable training and generalization can be achieved despite
this problem.

IV. OTHER CHIP TRAINING EXAMPLES

Although Kakadu was designed primarily for low-power
arrhythmia classification, it has been applied to other classifi-
cation problems. In this section, a series of training examples
of increasing complexity are described.

An output was considered correct if the difference between
the measured and desired output was less than a particular
margin. In all of these experiments, this margin was set to be
0.08 V.

There is a linear relationship between the value of the
neuron gains (which are determined by the resistance of the
neurons) and the value of the bias current. For example, the
Kakadu chip will produce the same output if the neuron gain
is doubled and the bias current halved. Since the neuron gains
were fixed at 1.2 M2, the bias current can be adjusted to suit
the problem. This was not necessary in the experiments that
were performed, but it is envisaged that this may be necessary
for some problems. In all of the experiments below, the bias
current used was 6.63 nA unless otherwise stated.

The combined search algorithm [11] was chosen to perform
the training in all of the Kakadu training experiments because
of its reliable training and generalization performance.
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TABLE IV
TRAINING ALGORITHM COMPARISON (ONLINE MODE). ALL NUMBERS OF THE
ForM (m, s) ARE THE MEAN AND STANDARD DEVIATION VALUES

Algorithm | Iterations Training Error Converged
bp (9.85¢+02, 4.20e+01) | (1.77e-03, 2.02¢-03) | 4
cprs (8.96e+02, 1.91e+02) | (4.14e-04, 4.68¢-04) | 11
sed (1.00e-+03, 0.00e+00) | (7.62e-04, 5.74e-04) | 0
swnp (9-40e+02, 1.37e+02) | (5.50e-04, 4.63e-04) | 5
wp (7.80e+02, 2.52e+02) | (1.74e-04, 1.95¢-04) | 12
¢ TABLE V

TESTING COMPARISON (ONLINE MODE). ALL NUMBERS OF THE FORM
(m, s) ARE THE MEAN AND STANDARD DEVIATION VALUES

Algorithm | Testing Error Correct (%)
bp (1.50e-03, 2.20e-03) { (85, 17)
cprs (5.01e-04, 5.72¢-04) | (92, 11)
sed (5.68e-04, 5.24¢-04) | (91, 8)
swnp (5.53e-04, 4.47¢-04) | (93, 7)
wp (4.10e-04, 1.79¢-04) | (97, 3)

A. Combined Search Algo}ithm

The CSA [11] employs two minimization strategies, namely
modified weight perturbation and random search. Modified
weight perturbation is a local search and the random search al-
gorithm is a nonlocal search technique. CSA can be described
by the following pseudocode.
while not converged
{

/* modified weight perturbation */
for i = 1 to 10

{

for each weight w

wsave = w;

w = w + DELTA;

/* DELTA is usually set to 1 */

evaluate error;

if error has not improved

w = wsave;

/* random search algorithm */
for i = 1 to 30

{

for each weight w

{
wsave = w;
w = uniformly distributed
random number;
evaluate error; »
if error has not improved

W = wsave;

}
}
The CSA algorithm is very simple and the results obtained
are surprisingly good, with convergence being very fast for

small problems. Although CSA has been successfully used to
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TABLE VI
RESULTS OF APPLYING KAKADU TO THE XOR PROBLEM (6.9 uW)
Input (Volts) | Desired Output | Output (Voits)
0.2(0.0]00 0.0 0.031
02(02]00 0.2 0.215
02]00}02 0.2 0.173
020202 0.0 0.032
TABLE VII
RESULTS OF APPLYING KAKADU TO THE PARITY THREE-BIT PROBLEM 9.0 uW)
Input (Volts) Desired Output | Output (Volts)
02(-01]-01]-01 0.1 -0.103
0.2]-0.1 | -0.1 [ +0.1 +0.1 +0.952
0.2| -0.1 | +0.1| -0.1 +0.1 +0.103
0.2 -0.1 | +0.1 | 40.1 0.1 -0.008
0.2 40.1|-0.1 | -0.1 +0.1 +0.103
02401 -0.1 | +0.1 0.1 -0.073
0.2] +0.1 | +0.1 | -0.1 0.1 -0.090
0.2 [ +0.1 | +0.1 | 40.1 +0.1 +0.105

train Kakadu, it is expected that performance would degrade
rapidly for larger neural networks.

B. XOR

XOR has been a benchmark problem for neural networks
because it is a simple yet highly nonlinear application. The
minimum network size which can solve this problem is (3,
2, 1) with one input being a bias. To make Kakadu behave
like a smaller network, the weight values for the unconnected
synapses are set to zero. Kakadu was successfully trained on
this problem, results of this test being shown in Table VL

The power consumption for these neural-network training
problems was measured after the outputs had settled to the
final output value. This is the static consumption and includes
the chip plus the off-chip neuron dissipation. For XOR, this
figure was 6.9 W at 3 V and the standard 6.63 nA. The same
problem has been trained with bias currents down to 3.5 nA.

The settling time from a change in the inputs until the output
reaches 90% of the final value (the Kakadu chip driving a 2
PF active probe) was typically 30 us. Of course, a higher load
capacitance will increase the settling time of the chip.

C. Parity (Three-Bit)

Another nonlinear benchmark test is the three-bit parity
problem which can be thought of as XOR in three dimensions.
In this example, a bipolar coding was used instead of the
unipolar coding of the XOR problem to show that Kakadu
is capable of both.

Kakadu was successfully trained using a (4, 3, 1) network,
the results of the experiment being shown in Table VII. The
quiescent power consumption for this problem was 9.0 pW.

D. Parity (Four-Bit)

Another nonlinear benchmark test is the four-bit parity
problem which can be thought of as XOR in four dimensions.
This test was successfully trained using a (5, 4, 1) network,
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TABLE VIII
RESULTS OF APPLYING KAKADU TO THE PARITY FOUR-BIT PROBLEM (15.6 uW)
Input (Volts) Desired OQutput | Output (Volts)
02]-01 |-01|-011{-01 0.1 -0.071
02]-01 [ -01{-01 [+01 +0.1 +0.071
0.2 -0.1 | -0.1 4017 -0.1 +0.1 +0.066
0.2] -0 | -0.1 | 4+0.1 | +0.1 0.1 -0.085
0201 |+0.1]-0.1 | -0.1 +0.1 +0.061
0.2 -01|+0.1]-0.1 |+0.1 0.1 -0.073
02]-0.1 [+40.1]40.1 | -0.1 0.1 -0.059
0.2 -0.1 | +0.1 [ +0.1 | +0.1 +0.1 +0.071
02(+01}-01|-01]-01 +0.1 +0.141
0.2 +0.1|-01 | -0.1 | +0.1 0.1 -0.117
02401 | -0.1 | +0.1 | -0.1 0.1 -0.103
0.2 +0.1] -0.1 | +0.1 | +0.1 +0.1 +0.051
02| +01|+01]-0.1 | -0.1 0.1 -0.056
0.2]4+0.1|+0.1| -01 | +0.1 +0.1 +0.022
0.2 +0.1 | +0.1 | +0.1 | -0.1 +0.1 +0.085
0.2 +0.1 | +0.1 | 40.1 | +0.1 0.1 0.024
CLASS | TRAINING SET | TESTING SET

| H
N
A )
o | wfm | ol
Fig. 9. Character recognition training and testing sets. Kakadu was trained

on the training set and then tested with the corrupted characters in the
right-hand column.

H
4

the results of the experiment being shown in Table VIII. The
quiescent power consumption for this problem was 15.6 uW.

In this example, a satisfactory result could not be achieved
by the direct optimization of (10) on the test chip. A mathemat-
ical model of the chip was derived from (3), and weights were
allowed to be floating point values within the maximum range
of the synapse values (i.e., —31 < w < 31). This enabled
training to be performed in the absence of quantization effects
and makes (10) continuous in this range. When the chip was
trained using the starting values thus obtained, it converged
quickly to a solution.

E. Pattern Recognition

Kakadu was tested on a simple character recognition prob-
lem (Fig. 9). A (10, 6, 4) network was divided into a bias
unit and a 3 x 3 pixel array. The network was trained (bias
current 4.4 nA) on the characters “0,” “1,” “7,” and “+,” each
output being assigned to one character. After training, a single
bit in each character was corrupted and the network output
passed through a “winner take all” decision to determine the
network’s classification of the corrupted character. The results
of this experiment (shown in Table IX and Fig. 9) show that
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from Neursl Network Classifier

RVA R Deect (105,1) @ 125 Hz

probe Atitae | a] XoutofY FINAL
CLASSIFICATION

from _I—’

HRA — "] P Deeat Timing Classifier

probe

Fig. 10. Overview of the MATIC classification system. The QRS and P wave detectors detect ventricular and a trial depolarizations, respectively

(R and P waves).

TABLE IX
RESULTS OF APPLYING KAKADU TO THE CHARACTER RECOGNITION PROBLEM
(22.5 uW). IN THE “INPUT” COLUMN A “1” DENOTES AN INPUT VOLTAGE OF
0.1 V AND A BLANK IS —0.1 V. AN ADDITIONAL Bias INPUT OF 0.2 V wAs USED

Input Output Class
1|11} -012|-011-009 |[+0.10| O
1 1
1(1}1
1[1{1]-0.10 | -004 | -0.16 | +0.09| ©
1|11
il1|1
1 -0.10 { -0.10 | +0.10 | -0.10 1
1
1
1 -0.05 | -0.09 | +0.00 | -0.13 1
11
1
111(1]-0.10 | +0.09 | -0.10 | -0.10 7
1
1
1{1(1]-0.16 | +0.03 | -0.10 | -0.02 7
1
1|1
1 +0.10 | -0.10 | -0.09 | -0.08 | +
1|1(1
1
1 +0.06 | -0.08 | -0.02 | -0.15 | +
1i1

Kakadu was able to correctly classify patterns that it had not
been trained on. Kakadu draws 22.5 uW during this test.

V. MATIC EXPERIMENT

A. MATIC Algorithm

The MATIC algorithm [2] classifies arthythmias based on
timing and morphological features (see Fig. 10). Inputs to
the classifier are voltage levels obtained from temporary
catheters implanted on the surface of the heart, one in the
high right atrium (HRA) and one in the right ventricular
apex ventricle (RVA). Such signals are known as intracardiac
electrograms (ICEG). The raw signals are then bandpass
filtered (0.5-100 Hz), and this becomes the input to the
MATIC algorithm. MATIC can identify four different types
of arrhythmia, namely ventricular fibrillation (VF), ventricular
tachycardia (VT), supraventricular tachycardia (SVT), and
normal sinus rhythm (NSR). These four different arrhythmias
correspond to the four different therapies available in an ICD,

. DONE BY
Patient HUMAN
YES Select NSR
& VT 1:1 data
for training
NO
Disable Train NN with
Morphology Data
Enable/Disable Morphology Weights
DA . X OUTPUT
Ll PRV MATIC Classification |—o-

Fig. 11. Flow chart/signal diagram of the MATIC configuration procedure.
In the case of VT 1:1 patients training data must be selected and the neural
network trained to produce a set of weights. Note that morphology is only
enabled for VT 1:1 patients.

which are to apply a high energy shock (defibrillate), pace the
ventricles, pace the atrium, or do nothing.

The R and P wave detectors are peak detectors which
are used to identify depolarizations in the RVA and HRA
channels, respectively. From the output of the R and P wave
detectors, the timing classifier can determine the depolarization
sequences of the heart. From this timing information, reliable
classification can be made for most arrhythmias. A certain
type of VT, called ventricular tachycardia with 1:1 retrograde
conduction (VT 1:1) cannot be classified based on timing
between two channels. VT 1:1, however, is often characterized
by a change in morphology of the RVA signal and a neural
network is used to recognize normal, and VT 1:1 signals for a
particular patient. The timing and morphology classifiers run in
parallel, and the results are combined using simple arbitration
logic to produce a final classification.

MATIC Configuration: Most patients do not require mor-
phology classification, as timing is sufficient to identify the
arthythmia. For some patients, however, morphological clas-
sification is required. A human must configure the MATIC
system before it is used to identify whether morphology is
required. MATIC is used with morphology only for VT 1:1
patients. In the case of non-VT 1:1 patients, the arbitration
logic discards all results from the neural network. A flow
chart/block diagram of this configuration process is shown in
Fig. 11.



LEONG AND JABRI: A LOW-POWER VLSI ARRHYTHMIA CLASSIFIER
START

YES

NO
YES

RR

NO
YES
@‘ v
NO
YES
PP < 280ms? SVT
NO
YES
2PR<RR? NSR
NO

SVT

Fig. 12. Flowchart of timing based decision logic (PP = time interval
between the previous two P waves, RR = interval between previous R
waves, PR = time from last P wave to R wave). Note that “dissociated”
means PP/RR > 1.5.

Configuration involves deciding if the patient is a VT 1:1
patient or not and if so, four samples each of the patient’s NSR
and VT 1:1 morphology must be provided to serve as templates
for the morphology classifier. After training, the weights need
not be changed.

After configuration, the MATIC system is fully automatic,
taking the filtered data as input and producing NSR, SVT, VT,
and VF classifications as output.

Timing Logic: The timing logic used in Kakadu can be
described by the flowchart shown in Fig. 12. The timing logic
first computes the interval between R waves (RR interval),
the interval between P waves (PP interval) and the interval
between the last P wave and the last R wave (PR interval).
From these three numbers, the timing logic can identify four
different types of arrhythinia, namely VF, VT, SVT, and NSR.
These four different arrhythmias correspond to the four differ-
ent therapies available in an ICD, which are to apply a high
energy shock (defibrillate), pace the ventricles, pace the atrium,
or do nothing. It is a very simple classifier, implemented using
a decision tree which classifies the sequences much as a human
would.

Neural Network Morphology Classifier: A typical VT 1:1
patient is shown in Fig. 13. It can be easily seen in the figure
that the first three peaks (QRS complexes) are a different
morphology to the last five QRS complexes. These patterns
correspond to NSR and VT, respectively, and the neural
network is used to recognize these rhythms.

A window of samples is formed via a delay line as illustrated
in Fig. 14. The neural network can be thought of as running

[®] mce 045.vts.5

STATUS: Doodle lines cieared...

Fig. 13. VT with 1:1 retrograde conduction. Note how the morphology of
the signal changes between normal rhythm (on the left) and VT 1:1 (on the
right).

OUTPUT LAYER

HIDDEN LAYER

" Heart Signal
Fig. 14. Block diagram of the neural network used to perform morphology

classification. The heart signal is centered within the neural network through
synchronization with the R wave.

continuously, and the output of the network is read when the
QRS complex is centered in the 10 sample window formed
by the delay line. The R wave detector is used to detect the
middle of a QRS complex and hence center the QRS complex.

To construct a training set for a given patient, four normal
and four VT 1:1 rhythms are hand selected. Normal rhythms
were trained to have an output of 0.0 V and VT 1:1 rhythms
1.0 V. The weights used by the MATIC morphology classifier
are then obtained by training the neural network on this data
set. When ICEG signals are applied to the neural network, a
VT 1:1 morphology is assumed present if the output becomes
greater than 0.8 V.

Post Processing: The post processor takes the output of
both the timing and morphology algorithms and assigns an
intermediate output class given by the function

CLASS — {VT if morphology > 0.0 and timing # VF
timing . otherwise.
The output is then passed.through an X out of ¥ detector
which outputs a classification only if five out of the last six
output classes from the post processor are the same.
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TABLE X
SuscLass CONFUSION MATRIX OF THE MATIC CLASSIFICATION USING THE
KakADU CHip FOR MORPHOLOGY. NOTE THAT 99.6% OF CLASSIFICATIONS ARE
CORRECT. THE Rows REPRESENT THE HUMAN CLASSIFIED SUBCLASS AND THE
COLUMNS REPRESENT THE MATIC CLASSIFICATION. HUMAN SUBCLASS
CLASSIFICATIONS ARE COLLAPSED INTO SUPERCLASSES IN THE ROWS
ACCORDING TO THE “CLASS” COLUMN. THE “REGIONS” COLUMN IS
THE TOTAL NUMBER OF STABLE RHYTHMS FOR THAT SUBCLASS

Subclass | Class | Regions | NSR | SVT [ VT | VF
NSR NSR 64 | 5605 4 2 0
ST NSR 10 | 1535 24 2 1
SVT SVT 9 0| 1022 1] 0
AT SVT 2 0 52 0 0
AF SVT 3 0] 165 0] o0
VT vT 9 0 0] 332 o0
VT 11 | VT 10 2 0(1253| O
VF VF 6 0 0 2| 196
VTF VF 9 0 2 01116
TABLE XI

SuBCLASS CONFUSION MATRIX OF THE MATIC CLASSIFICATION
USING KAKADU. 98.4% ARE CORRECTLY CLASSIFIED

Class | Class | NSR | SVT | VT | VF
NSR NSR | 1114 o 18] o0
VT 1:1 | VT 0 161974 1

B. MATIC Results

The MATIC system was used on a database of 12483 QRS
complexes recorded from 67 patients [12] during electrophys-
iological studies (EPS) where temporary catheters were placed
under fluoroscopic guidance in the RVA and the HRA. These
signals were sampled at 1000 Hz and recorded.

The MATIC algorithm was applied with morphology algo-
rithm being implemented on the Kakadu chip (via Jiggle) and
the rest of the algorithm implemented in software. Note that to
facilitate debugging, the delay line of Fig. 14 was implemented
in software. An experimental prototype of a bucket brigade
device delay line was implemented on an earlier chip [13] and
found to have a charge transfer inefficiency of 0.035% which
would be more than adequate for this application.

The database was “played” through this hybrid hard-
ware/software system to obtain the results which are tabulated
in Table X. The results of classifying only the VT 1:1 patients
(the neural network is not used for other patients) is shown
in Table XI.

To compare the results of the experiment with that of a
digital neural network, a standard two-layer perceptron (TLP)
of the same network size was first trained. The results of this
are shown in Table XII. The TLP network has marginally
better performance than the Kakadu network, and this is mostly
due to the limited precision weight range available on the
Kakadu chip (six bits).

The power consumption of Kakadu for the 10 VT 1:1
patients are shown in Table XIII. The maximum power con-
sumption of the chip was 25 uW for the patients studied. The
propagation delay of the Kakadu chip is approximately 30 us,
and Kakadu has negligible (<100 pA) power consumption at
zero bias. If a conservative value of 1000 us for propagation
is allowed, the energy consumed is 25 nJ per feedforward
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TABLE XII
CONFUSION MATRIX OF MATIC CLASSIFIER USING A NORMAL THREE-LAYER
PERCEPTRON IMPLEMENTED USING DOUBLE PRECISION FLOATING
POINT ARITHMETIC. NOTE THAT 99.2% OF CLASSIFICATIONS
ARE CORRECT. THE Rows REPRESENT THE HUMAN CLASSIFIED
CLASS AND THE COLUMNS REPRESENT THE MATIC CLASSIFICATION

Class | Class | NSR|SVT | VT | VF
NSR | NSR | 1319 0 0| 0
VT 11 | VT 1| 15jwr| 4
TABLE XIII
PowER CONSUMPTION OF KADADU CHIP FOR THE 10 VT 1:1 PATIENTS
Patient | Power (uW)
1 18.3
2 165
3 126
4 138
5 20.1
6 21.6
7 9.0
8 15.6
9 135

s
=]

24.0

operation. The bias to the chip can be turned off when it is
not being used (99.9% of the time), and so the average power
consumption of the system (assuming the normal heart rate is
1 Hz) can be reduced by a factor of 1000 to less than 25 nW.

VI. DISCUSSION

The problem of arrhythmia classification by morphology is
not a particularly difficult problem if one is given a reasonable
power budget. An ICD, however, requires very low power
consumption, and this precludes the use of most arrhythmia
classification algorithms.

Neural networks have been successfully applied to pattern
recognition problems in many areas of signal processing. Their
regular and parallel architecture make them suitable for VLSI
implementation and they can be implemented efficiently using
analog techniques.

Neural networks are particularly suitable for use in im-
plantable devices since analog computation leads to small area,
and by operating transistors in the subthreshold region, low
power consumption is achieved. These design ideas were used
to implement the MATIC system which has the advantages
of neural network classifiers, while maintaining low power
consumption.

VII. CONCLUSION

We have described the MATIC system which classifies
arrhythmias based on a hybrid decision tree and neural net-
work approach. Because a neural network is computationally
expensive, a low-power analog VLSI neural-network chip was
designed and successfully trained to perform this task. The
system can classify a large database of arrhythmias to an
accuracy of 98.4% while consuming an average power of less
than 25 nW. :
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