
For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with

Monte Carlo

Programming

Journal: Transactions on Programming Languages and Systems

Manuscript ID: TOPLAS-00035-2013.R2

Manuscript Type: Paper

Date Submitted by the Author: n/a

Complete List of Authors: Frechtling, Michael; The University of Sydney, Electrical & Information

Engineering
Leong, Philip; The University of Sydney, Electrical & Information
Engineering

Computing Classification
Systems:

Programming Languages, Software Engineering, Numerical Analysis,
Probability and Statistics

Transactions on Programming Languages and Systems

For Peer Review

XX

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo
Programming

MICHAEL FRECHTLING, The University of Sydney
PHILIP H.W. LEONG, The University of Sydney

Run-time analysis provides an effective method for measuring the sensitivity of programs to rounding errors.
To date, implementations have required significant changes to source code, detracting from their widespread
application. In this work we present an open source system that automates the quantitative analysis of
floating point rounding errors, through the use of C-based source-to-source compilation and a Monte Carlo
Arithmetic library. We demonstrate its application to the comparison of algorithms, detection of catastrophic
cancellation, and determination of whether single-precision floating point provides sufficient accuracy for a
given application. Methods for obtaining quantifiable measurements of sensitivity to rounding error are also
detailed.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors — Compilers, Code
Generation; D.2.4 [Software Engineering]: Software/Program Verification — Statistical Methods, Valida-
tion; G.1.0 [Numerical Analysis]: General — Computer Arithmetic, Error Analysis; G.3 [Probability and
Statistics]: Probabilistic Algorithms

General Terms: Design, Reliability, Verification

Additional Key Words and Phrases: Floating Point Arithmetic, Dynamic Error Analysis, Monte Carlo Arith-
metic

ACM Reference Format:
Michael Frechtling and Philip H. W. Leong, 2013. MCALIB - Measuring Sensitivity to Rounding Error with
Monte Carlo Programming. ACM Trans. Program. Lang. Syst. X, X, Article XX (June 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
IEEE-754 [Floating-point Working Group 2008] has long been the standard for
computing using Floating Point (FP) numbers but, as a finite precision arithmetic
system, it is capable of producing anomalous results. Rounding errors can significantly
reduce the accuracy of a computation, and result in errors many times larger than
expected [Goldberg 1990]. FP arithmetic is now used for systems where accuracy
is key, such as scientific Software (SW) and critical systems. In order to properly
implement and verify numerical SW, techniques to determine the effects of such errors
are required [Howden 1980; Monniaux 2008].

Monte Carlo Arithmetic (MCA) [Parker 1997] tracks rounding errors at run-time
by applying randomization to input and output operands forcing the results of FP
operations to behave like random variables. This turns an execution into trials of
a Monte Carlo simulation allowing statistics on the effects of rounding error to

Author’s addresses: M. Frechtling and P.H.W Leong, Computer Engineering Laboratory, Room 840, Building
J03, University of Sydney, Camperdown, NSW 2009, Australia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0164-0925/2014/06-ARTXX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 1 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:2 M. Frechtling & P.H.W. Leong

be obtained over a number of executions. Statistical measurements are then used
to analyse the results, sensitivity to rounding error is suspected if a high level of
variance is observed between trials. As an example, consider the subtraction 11111113 -
11111111 in decimal arithmetic using 8 significant digits. In standard arithmetic, the
answer is 2.0000000 and 7 digits of significance are lost due to cancellation. With MCA,
the answer for a particular trial is 2.xxxxxxx where the x’s are random digits. Only the
most significant digit will be unchanged over a number of trials and so a large standard
deviation will result.

Despite the advantages offered by MCA and similar techniques, tools for rounding
error analysis are not in common usage. It is believed that one of the major barriers is
that source code needs to be modified so that custom libraries are called to execute the
arithmetic operations. In this work, the use of source to source compilation, supported
by mixed precision libraries, is advocated. The approach allows for the implementation
of a general purpose FP analysis tool that can be applied to arbitrary programs without
significant changes to the source code, a technique that we refer to as Monte Carlo
Programming (MCP). The implementation provides opportunities for wider adoption of
runtime error analysis, and allows developers to test both the accuracy of algorithms
and the suitability of different FP formats for a particular implementation. Although our
tool is designed to be used with MCA, the same approach could be used in conjunction
with other rounding analysis techniques. The main contributions of this work are as
follows:

— An open source MCP implementation capable of performing variable precision MCA
and supporting both single and double precision FP formats.

— A method for including random variables in programs and performing statistical
analysis of the resulting output.

— A method for inspecting the accuracy of floating point values in existing programs.
— A method for imposing new semantics on arithmetic primitives in existing programs.

MCP can be used for the simplified implementation of several data analysis schemes,
such as sensitivity analysis to measure the effect of uncertainty in input data or
arithmetic operations. The effect of missing data, dirty data and inexact data can
also be measured. An open source implementation of the Monte Carlo Arithmetic
LIBrary (MCALIB), including CIL libraries and documentation, is available via github
from https://github.com/mfrechtling/mcalib.git. The remainder of this paper is organized
as follows. In Section 2, background concerning FP systems and error analysis methods
is given. Section 3 gives an overview of MCA. The implementation of the library is
detailed in Section 4. Methods for interpreting the results of MCA analysis are provided
in Section 5. Section 6 describes test cases and methods. Results are presented in
Section 7, and finally, conclusions are drawn in Section 8.

2. BACKGROUND
2.1. IEEE-754 Floating Point
The binary IEEE-754 [Floating-point Working Group 2008] FP number system
F(β, p, emin, emax) is a subset of real numbers with elements of the form:

x = (−1)smβe (1)

The system is characterized by the radix β, which is assumed to be 2 in this paper,
precision p, the exponent values emin ≤ e ≤ emax, the sign bit s ∈ {0, 1} and the
significand m ∈ [0, β). Normalized values are most commonly used and are represented
as a non-zero x ∈ F with |m| ∈ [1, β) and emin < e < emax. De-normalized numbers are

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 2 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:3

Table I. IEEE-754 Format Types

Type Length Precision (p) emax emin

Single 32 24 -127 128
Double 64 53 -1023 1024

Note: Format specification for single and double preci-
sion types

also supported and represent values of smaller magnitude than normalized numbers
with m ∈ [0, 1) and exponent e = emin. Several other classes of numbers are available
with special formats. Zeroes have a significand m = 0 and e = 0, both +0 and −0 can be
represented using the sign bit s. Infinity and Not a Number (NaN) are both represented
with e = emax. The system developed for this paper supports the single and double
precision IEEE-754 formats detailed in Table I.

An important concept within FP arithmetic is the distinction between exact and
inexact values. FP arithmetic systems are implemented as finite precision rounded
arithmetic schemes and as such are not able to represent every value within the infinite
set of real numbers, R. Instead the set of FP numbers, F, is a finite subset of real
numbers F ⊂ R. Real numbers that are representable in FP format are referred to as
exact values, while inexact values refer to real numbers that cannot be represented
and are instead rounded to the nearest exact value. Rounding of inexact values to their
nearest FP approximation leads to the concept of rounding error, a subject that has
been studied in several publications [Goldberg 1990; Higham 1996; Wilkinson 1994;
Parker 1997] and states that the the rounded approximation, (x̂ ∈ F), of a real number,
(x ∈ R), is modelled as follows:

x̂ = F(x) (2)
= x(1 + δ) (3)

The value δ = |x−x̂x | is the relative error of the rounded approximation and is limited by
the machine epsilon of the FP system, δ ≤ ε, where ε = 2−p [Goldberg 1990]. In the
general case errors are due to not only finite precision limitations but a number of
factors including errors of measurement or estimation, quantization error, or errors
propagated from earlier parts of a computation. Although the IEEE-754 standard is
used in all types of applications mostly without issue, unexpected results cannot be
avoided in certain situations due to the effects of finite precision and rounding error.

The primary error concerning the work in this paper is catastrophic cancellation.
Cancellation is a phenomenon that will occur when two nearly equal values are sub-
tracted leaving a large number of leading zeroes after the radix point. As FP utilizes
normalized values, these leading zeros must be removed by shifting the result to the left
and adjusting the exponent accordingly. The phenomena of catastrophic cancellation
is one of the leading causes of loss of significance in FP arithmetic. As an example
consider the solution to the equation x2 + 444x + 1 = 0 using the quadratic formula
r = (−b±

√
b2 − 4ac)/(2a). IEEE-754 single precision format uses a 24-bit binary signifi-

cand giving it a precision value p = 24, equivalent to log10(224) ≈ 7.225 decimal digits. In
many instances the answer will be accurate to 7 decimal places. Unfortunately, in this
example, the exact result is r1 = −222±

√
49283 = −0.00225226368 whereas IEEE-754

arithmetic gives r1 = 0.000000000. This has a 100% relative error. A more formal model
of catastrophic cancellation is given in [Higham 1996]. Consider the equation x̂ = â− b̂

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 3 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:4 M. Frechtling & P.H.W. Leong

where â = a(1 + δa) and b̂ = b(1 + δb), in this situation the relative error of x̂ is given by:∣∣∣∣x− x̂x
∣∣∣∣ ≤

∣∣∣∣∣ (a− b)− (â− b̂)
a− b

∣∣∣∣∣ (4)

≤
∣∣∣∣ [a− a(1 + δa)]− [b− b(1 + δb)]

a− b

∣∣∣∣ (5)

≤
∣∣∣∣−aδa + bδb

a− b

∣∣∣∣ (6)

≤ max(|δa|, |δb|)
|a|+ |b|
|a− b|

(7)

This shows that the relative error in x̂ is large when |a− b| � |a|+ |b|

2.2. Error Analysis
The design of numerically stable algorithms must ensure that the issues reviewed do
not adversely contribute to the accuracy of the solution. In the design of numerical
libraries, analysts use techniques such as forward and backward error analysis to
quantify the propagation of errors and understand their effect on the stability and
accuracy of the algorithms [Wilkinson 1994]. Unfortunately, these techniques cannot be
applied to arbitrary programs, require manual analysis and considerable expertise, and
do not scale beyond small subroutines.

One of the primary questions in the study of numerical analysis is not how to develop
the best techniques or systems, but how to get the best techniques and systems into
the hands of the developers working with real world problems. Aside from the practical
considerations of ease of understanding, implementation and use, there exists the
questions of what developers need or want in a numeric analysis tool. One of the best
assessments of numeric analysis techniques and the current state of the art is presented
in [Kahan 2006]. Kahan notes a significant problem in encouraging the adoption of
numeric analysis techniques; the average developer is not interested in these techniques
until after something has gone wrong, at which point analysis is often required for
“...an assignment of blame and the task of relieving the distress, if possible.” It is for
this reason, among others, that developers often search for what Kahan calls mindless
assessments of round-off error, essentially systems that allow for a fire and forget
approach rather than an in depth analysis of the inner numeric workings of a piece of
software. When viewed through this lens, the question of how to design systems that
will be eagerly adopted by developers becomes a philosophical difference between two
approaches to numeric analysis;

— How many significant digits are available in the results, or, how accurate is my
program?

— What is the worst case bound on the absolute/relative error, or, how badly could my
program fail?

What Kahan refers to as mindless assessments, often focus on the second approach, as
this is the question that developers want answered after something has gone wrong (in
which case the question often becomes how badly did my program fail?). The authors
advocate the first approach for the adoption of error analysis techniques as part of the
Software Development Life Cycle (SDLC). In order to achieve this we have attempted
to design an analysis method that will satisfy the needs of both developers - seeking
high level, automated analysis of existing programs, and numeric analysts - seeking

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 4 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:5

extendible, in depth analysis of floating point formats and operators. It is this vein of
thinking that MCALIB and MCP has been developed. The remainder of this section
provides a more in depth overview of existing error analysis techniques and the sate of
the art.

Error analysis methods for software are divided into two types, dynamic, which
analyses the results of program execution for a specific input set, and static, which is
performed without the need for execution. While these analysis types are intended
to be complimentary and may be used to validate each others results, key differences
exist. Dynamic analysis provides a higher level of flexibility and can even be performed
without access to the source code in the case of automated tools, but more often requires
significant modifications to the source code, and due to its data dependency must be
performed using an adequate set of inputs to produce meaningful results. Conversely,
by limiting analysis to individual executions of a system, dynamic analysis methods
are efficient as system properties need only be checked along a single execution path.
Furthermore, testing is conducted using actual operations performed by the system
rather than mathematical abstractions allowing for more precise analysis. This also
avoids compatibility issues being introduced from differences in arithmetic format,
compilers or system architecture [Monniaux 2008]. Static analysis avoids the data
dependency issue by abstracting the possible states and operators of tested software,
leading to a mathematical formulation that allows all possible states of a system to
be tested. An overly rigorous definition will result in a complex analysis that does
not scale to large systems. Automated tools for static analysis provide the ability to
pinpoint the exact locations of errors in software, often at an earlier stage in the SDLC,
however, automated tools only support certain languages and static analysis becomes
time consuming when performed manually.

Static analysis techniques will typically use formal methods, whereby software is
analysed using mathematical techniques based on formal semantics of the program-
ming language used. These techniques include denotational semantics, axiomatic
semantics, operational semantics and abstract interpretation. Methods used for static
analysis include three basic types. Model or property checking requires the creation
of formal models for both the system and its specification. Model checking may then
be used to determine if the system model meets all requirements of the specification
model [Lam 2005]. In order to perform model checking algorithmically, it is limited to
finite state systems and is typically used for the analysis of Hardware (HW) systems
as the undecidability of SW limits it’s effectiveness. Due to this limitation model
checking is often used for analysis of SW and HW systems modelled as a Finite State
Machine (FSM). Data flow analysis is a technique for generating possible sets of values
for nodes in a program’s Control Flow Graph (CFG), this is typically accomplished
using an iterative approach that determines values for the in-states and out-states at
each node in the CFG until the complete system stabilizes [Kildall 1973; Cooper et al.
2002]. Finally abstract interpretation creates partial abstractions of operations and
variables in order to create a computable semantic interpretation. It is viewed as a
partial execution technique for static analysis [Cousot and Cousot 1979; 1977]. The
semantics created for abstract interpretation are defined as monotonic functions that
relate elements of the system across ordered sets.

Systems available for static analysis of rounding errors include Fluctuat [Goubault
and Putot 2006], Astree [Blanchet et al. 2002] and Polyspace [Deutsch 2003].
Fluctuat performs abstract interpretation using an abstract domain based on affine
arithmetic for analysis of FP error. This tool is now being used by Airbus to automate

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 5 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:6 M. Frechtling & P.H.W. Leong

accuracy analysis of control software [Delmas et al. 2009]. Astree is based on interval
arithmetic methods and is designed for safety critical analysis, including FP error
analysis [Blanchet et al. 2002]. This software is also being used by Airbus for automated
software analysis [Delmas and Souyris 2007]. Polyspace is used to locate potential
run-time errors including arithmetic overflow, divide by zero and buffer overrun, the
software is now supplied by MathWorks and is used in several industrial applications.

Several systems have been developed for performing dynamic analysis of FP SW.
Interval Arithmetic (IA) represents a value x by an interval [xlo, xhi]. Intervals are
propagated through the calculation e.g. [alo, ahi] − [blo, bhi] = [alo − bhi, ahi − blo]. The
use of an interval as opposed to a single value addresses issues resulting from
inexact values and round-off error. Rather than attempting to find the nearest
approximation of an inexact value, an interval consisting of two exact values is found
that can be said to contain the inexact result. While IA can be used to track inexact
values and rounding errors during computation it often produces overly pessimistic
error bounds [Kahan 2006]. This due to the assumption that input arguments
may vary independently over given intervals, an issue known as the dependency
problem [Krämer 2007]. An alternative to IA is Affine Arithmetic (AA), an interval
analysis method that maintains first order correlations between quantities addressing
the dependency problem and producing tighter error bounds [de Figueiredo and Stolfi
2004]. The Contrôle et Estemation STochastique des Arrondis Calculs (CESTAC)
technique [Vignes 1996] is an implementation of the probabilistic approach similar to
MCA. Using CESTAC an execution is repeated N times with the rounding method of
FP operations randomized by rounding the result up or down with 50% probability.
Using this method the least significant bit of the result significand is perturbed at
each arithmetic stage creating a set of N results RN . As in MCA, statistical analysis
of the result set can be used to determine the accuracy of the algorithm used. While
similar to MCA, it has been noted in both [Parker 1997] and [Kahan 1996] that several
issues exist with the CESTAC method such as the assumption of the normal distribu-
tion of results, and the assumption that 2-3 samples is sufficient. Parker provides a
overview of these issues and the way in which they are avoided with MCA [Parker 1997].

Several SW based implementations of these methods have been published including
Control of Accuracy and Debugging for Numerical Applications (CADNA) [Jézéquel
and Chesneaux 2008; Asserrhine et al. 1995], an implementation of Discrete Stochastic
Arithmetic (DSA) using the CESTAC method. Several SW libraries for IA are available
including eXtensions for Scientific Computation (XSC), Gaol, a C++ template class
available as part of the Boost library [Brönnimann et al. 2006; Goualard 2006;
Klatte and Corliss 1993] and the Multiple Precision Floating-point Interval (MPFI)
library, an implementation of IA that also uses the Multiple Precision Floating point
Reliably (MPFR) library for mixed precision implementation. Sun micro-systems
have also provided support for IA as part of their C/C++ compiler library [Walster
and Chiriaev 2000]. IA has also been implemented as part of Gappa [Daumas and
Melquiond 2010], a formal verification tool for fixed and FP arithmetic. Gappa utilizes
forward error analysis in addition to IA and requires a bounded input in order to
perform its analysis. Using this tool bounds on the outputs of an algorithms are
determined in addition to proofs on these bounds that may be checked via a proof
assistant [Muller et al. 2009]. In order to maintain reasonable performance, a limited
number of HW implementations of IA [Amaricai et al. 2009; Schulte and Swartzlander
2000; Stine and Schulte 1998] and CESTAC [Chotin and Mehrez 2002] can be found in
the literature. A SW implementation of MCA has been published by Parker [Parker
2003] along with a set of test cases, however, this implementation cannot be applied

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 6 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:7

to existing source without significant modifications. A Field Programmable Gate
Array (FPGA) based implementation of MCA addition and multiplication with an
area penalty of less than 22% over IEEE-754 was published by Yeung et. al. [Yeung
et al. 2011]. Another FPGA based implementation of MCA has also been published
by the authors [Frechtling and Leong 2013]. In this case the work was aimed at
increased performance of MCA operations and simplifying the design of the MCA FPU
by using existing FP operations to perform MCA, however, as this work involved the
development of custom HW units it required significant modifications to existing source
code in order to convert existing projects to use the MCA operators.

A separate class of analysis techniques have also been developed for bit width optimi-
sation of arithmetic operators. While primarily aimed at fixed point implementations
for Digital Signal Processing (DSP) and FPGA systems, most are applicable to both
fixed and FP formats. The Multiple Word Length Paradigm (MWLP) [Constantinides
et al. 2001] is an analysis technique that uses perturbation and scaling analysis for
fixed point arithmetic to perform error constrained word length optimization. The
system uses user defined error constraints on Signal to Noise Ratio (SNR) in order
to optimize FPGA based DSP systems for area use, speed or power consumption.
This system has been implemented for linear [Constantinides et al. 2003; 2002] and
non-linear [Constantinides 2006] DSP systems and is the basis for Right-Size, a
word-length optimization system for adaptive filters [Constantinides 2003]. Bit width
optimization methods have also been developed using static analysis techniques
including AA and Adaptive Simulated Annealing (ASA) [Lee et al. 2006]. These are
designed to use range and precision analysis of fixed point implementations in order
to guarantee the absolute error bounds of the system and have been implemented
in the tool MiniBit [Lee et al. 2005]. This type of analysis has also been expanded to
the analysis of FP applications using Automatic Differentiation [Gaffar et al. 2002].
Mixed analysis methods for both fixed and FP systems have also been developed using
mixed precision analysis for optimizing word lengths for speed, power consumption and
area use in FPGA systems [Gaffar et al. 2002]. Mixed analysis tools are also available
in the form of MiniBit+ [Osborne et al. 2007], and the BitSize tool [Gaffar et al.
2004]. Finally FP analysis systems have been developed using profiling techniques
based on tools such as Valgrind. Using these tools FPGA based arithmetic systems
for DSP implementation may be optimized for speed, power consumption and area
use. They perform mixed precision analysis of FP operations in order to identify
operations that may be optimized by reducing the precision of the FP operations or
replacing FP operators with fixed point or dual fixed point operators [Brown et al. 2007].
This type of analysis has implemented as part of the FloatWatch tool [Brown et al. 2008].

3. MONTE CARLO ARITHMETIC
MCA is used to track information lost using finite precision arithmetic by modelling
inexactness using the application of random perturbations. If x is a non-zero FP value
of the form given in Equation 1 the inexact function is defined as [Parker 1997]:

inexact(x, t, ξ) = x+ 2ex−tξ (8)
= (−1)sx(mx + 2−tξ)2ex (9)

where x ∈ R, x 6= 0, t is a positive integer representing the virtual precision, ξ is a
uniformly distributed random variable in the range (− 1

2 ,
1
2), (ξ ∈ U(− 1

2 ,
1
2)) and mx, ex

are the significand and exponent of x. It is assumed that 0 < t ≤ p. An operation

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 7 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:8 M. Frechtling & P.H.W. Leong

◦ ∈ {+,−,×,÷} is implemented as:

x ◦ y = round(inexact(inexact(x) ◦ inexact(y))) (10)

Equation 10 results in the inexact() function being applied to both operands and the
final result. Adjustments to the operands are referred to as precision bounding and
are used to detect catastrophic cancellation, while adjustments to the final result are
referred to as random rounding and are used to detect rounding error [Parker 1997].
The system developed for this paper performs both precision bounding and random
rounding by first applying a random perturbation to each input operand, performing
the required operation, then applying a random perturbation to the result. The inexact()
function as implemented for this paper applies random perturbations using uniform
absolute random values. Values for ξ are uniformly distributed over (− 1

2 ,
1
2) with mean

0 and standard deviation 1√
12

. If x is a random variable, then inexact(x) has a mean

E[x], (expected value of x), and a standard deviation of
√
S[x]2 + 22(e−t)/12, (where S[x]

is the standard deviation of the input x) [Parker 1997].

The virtual precision value t is used to control the level of random perturbation
applied during MCA. This, in turn, controls the accuracy of the Monte Carlo operations.
A large t value will result in a smaller exponent value for the operand perturbation,
increasing the accuracy of the operation. Similarly, a smaller t decreases the accuracy.
In practice, t is used to determine the minimum precision required to perform a specific
operation accurately. The precision is set to its lowest value then repeated computations
are performed as the precision is increased. When the required number of significant
figures of the result have stabilized (i.e the required accuracy has been achieved) the
minimum FP precision required to perform the operation accurately using standard
IEEE-754 FP operators is determined. The implementation developed for this paper
thus performs variable precision MCA, and the value of t used by the MCA library can
be modified at any time during execution.

4. MCALIB IMPLEMENTATION
4.1. Source to Source Compilation
Source to source compilation provides an effective tool for automated code transfor-
mations [Foster and Taylor 1994], and when paired with error analysis techniques
allows for the implementation of automated SW verification [Nguyen and Irigoin 2005;
Irigoin et al. 1991]. The C Intermediate Language (CIL) [Necula et al. 2002] is a high
level language representation including a set of tools for analysis and source to source
compilation of C programs. The CIL compiler cilly is implemented as a Perl script that
performs translations to C code as defined in a set of OCaml modules provided as part
of the CIL library. For the purposes of MCALIB CIL has been used for transforming C
FP operations into calls to the MCALIB library. This has been done by first lowering the
source code to a single statement assignment form, then converting FP operations to use
MCALIB library functions. As an example the following single precision multiplication
operation:

a = b * c;

would be redefined to the following function call:

a = _floatmul(b, c);

where float _floatmul(float a, float b) is the MCALIB function for handling sin-
gle precision MCA multiplication. This process will result in all supported FP operations
being replaced with function calls to the MCALIB library. It is important to note that

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 8 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:9

ALGORITHM 1: MCA Binary Operation
Input: Precision p FP operands xf and yf
Output: Precision p FP result rf
x = extend(xf , p+ t);
y = extend(yf , p+ t);
r = extend(0.0, p+ t);
x = inexact(x);
y = inexact(y);
r = mpfr op(x, y);
r = inexact(r);
rf = round(r, p);
return rf

ALGORITHM 2: MCA Inexact Operation
Input: Precision p+ t MPFR T variable x
Output: Precision p+ t MPFR T variable x (w. random perturbation applied)
if x == 0 then

return x;
else

ξf = (rand()/RAND MAX) - 0.5;
ξ = extend(ξf , p+ t);
ξ = mpfr mul(pow(2, ex - (t - 1)), ξ);
x = mpfr add(x, ξ);
return x;

end

although operations are done in a higher precision, the storage requirements of the FP
variables remain unchanged. This avoids portability issues associated with pointers
and dynamic memory allocation.

4.2. Library Implementation using MPFR
MCA has been implemented within MCALIB as a set of library functions for arithmetic
and comparison operations. As stated in Section 3 the primary difficulty with imple-
menting MCA is the need to extend the precision of the FP format being tested in order
to simulate infinite precision. The precision level must include p machine bits and t
virtual bits, a total precision requirement of W = p+t, where W is the working precision
of the MCA operation. The MCALIB library also implements variable precision MCA,
allowing the virtual precision to vary between 1 ≤ t ≤ p at runtime. To achieve this
functionality the mixed precision library MPFR [Fousse et al. 2007] is used for mixed
precision arithmetic in MCALIB.

For MCA functions, FP values are converted to mpfr_t type variables. The mpfr_t
type is a struct containing an arbitrary precision significand and a fixed precision
exponent. The precision of the significand of any MPFR variable may be set inde-
pendently at runtime to any value between MPFR_PREC_MIN and MPFR_PREC_MAX, i.e. 2
and 256 respectively. For the purposes of MCALIB, the maximum precision required
is Wmax = p + tmax which evaluates to 106 when using double precision operators.
Rounding in MPFR adheres to the C implementation of the IEEE-754 standard and
the default rounding mode round to nearest even is used for MCALIB.

The function for implementing MCA as per Equation 10 is shown in Algorithm 1. The

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 9 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:10 M. Frechtling & P.H.W. Leong

Table II. MCALIB Control Symbols & Functions

Symbol Symbol Value Function
MCALIB IEEE 0 Disable MCA
MCALIB MCA 1 Enable MCA, (precision bounding and random rounding).
MCALIB PB 2 Enable precision bounding only.
MCALIB RR 3 Enable random rounding only.

Note: Name, values and function of MCALIB control symbols for parameter MCALIB OP TYPE

FP operands are first converted to mpfr_t with precision W , and the result variable is
initialized with the same precision. The random perturbation ξ is applied to the input
operands using the inexact function shown in Algorithm 2. The arithmetic operation is
then performed using an MPFR operation, rounded to W bits. Random rounding is then
applied to the result using the inexact function and the final result is then converted to
its original format by rounding to p bits. MPFR implements correct rounding according
to the IEEE-754 standard with rounding error δ(x) ≤ ε. Rounding error will occur both
during the MPFR operation, δW , and when rounding to the original precision, δp. In
order to implement correct rounding while simulating infinite precision during the
MCA operation we must ensure that δW ≤ 1

2δp. The worst case scenario will occur
when t = 1, as when t = 0 the initial MPFR rounding stage will round to the original
precision with δW ≤ ε resulting in an exact value and δp = 0. When t = 1 the rounding
error in the MPFR operation will be limited as follows assuming the general case
δ ≤ 2−p:

δW ≤ 2−(p+t) (11)

≤ 1

2
2−p, t ≥ 1 (12)

≤ 1

2
δp (13)

MCALIB implements the four basic arithmetic operations, {+,−,×,÷}, unary minus,
and the set of comparison operators, {==, ! =, <,>,≤,≥} for single and double precision
formats. Comparison operators do not require MCA and as such they are implemented
using MPFR operations without the use of the inexact function. The library includes
two global parameters for controlling an MCA execution. The integer MCALIB_T sets
the virtual precision, t, of MCA operations while the integer MCALIB_OP_TYPE allows the
application of MCA to be controlled using a set of pre-processor symbols defined as part
of the MCALIB library. These symbols, their values and their functions are shown in
Table II. Both parameters can be modified at runtime.

4.3. MCALIB Features & Work Flow
MCALIB has been designed to facilitate the following analyses;

— Detection and quantitative analysis of sensitivity to rounding error.
— Analysis of individual algorithms to determine if single or double precision floating

point arithmetic is required.
— Optimization of individual algorithms for precision.
— Comparison of algorithms to determine the most suitable implementation.

Each of these features is implemented by applying MCALIB to a problem according to
the following MCALIB work flow as described below.

4.3.1. Algorithm Analysis. MCA is applied by first analysing the algorithm to be tested
in order to determine the following;

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 10 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:11

20 40 60 80 100

6e
−

07
7e

−
07

8e
−

07
9e

−
07

Analysis of Pairwise Summation Results for t = 24

Number of Trials (N)

S
td

. D
ev

.

Fig. 1. Pairwise summation - comparison of stan-
dard deviation for virtual precision t = 24 and dif-
ferent number of trials, N .

20 40 60 80 100

1.
54

1.
56

1.
58

1.
60

1.
62

1.
64

1.
66

Analysis of Pairwise Summation Results

Number of Trials (N)

S
ig

ni
fic

an
t D

ig
its

 L
os

t (
K

)
Fig. 2. Pairwise summation - comparison of signif-
icant figures lost K and different number of trials,
N .

— Where should MCA be enabled, i.e. which values are exact and which are not?
— What outputs are of interest, i.e. how is accuracy in this algorithm defined?

These questions are of high importance as they will have a significant impact on the
results if not answered correctly. Although MCALIB provides an automated implemen-
tation of MCA, it is still a naive implementation, i.e. the system does not understand
the difference between exact and inexact values and must be informed of this difference
by the developer. Using MCALIB, all FP operations are re-written as function calls to
the MCALIB library. Determining which inputs and outputs are to be treated as exact
or inexact is a decision left to the developer, and is achieved by enabling or disabling
precision bounding and random rounding individually as described below. Determining
what outputs are of interest is a question of determining what variables determine the
overall stability of an algorithm.

4.3.2. Source Code Modification. Having determined the above, the second stage of the
work flow involves modifying the source code. Implementation is a simple process
and very few modifications are required. Developers need to add the MCALIB header
file mcalib.h and modify their compilation process to utilize the cilly compiler and
include the MCALIB library file libmcalib.a. MCA can be enabled or disabled where
appropriate by setting the value of the control parameter MCALIB_OP_TYPE and the
virtual precision can be set using the parameter MCALIB_T.

4.3.3. Data Collection. Once the original source code has been correctly modified the
third stage of the MCALIB work flow is collection of data. In order to do this the
following steps are required.

— Determine the input domain to be tested.
— Execute the required number of trials and collect data from the watched output(s).

As stated previously MCALIB is a naive implementation of MCA and as such decisions
regarding the input domain are left to the developer. This is an important step, as MCA
performs a dynamic error analysis and results are only relevant to the input domain

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 11 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:12 M. Frechtling & P.H.W. Leong

tested. For example, if testing a summation algorithm using uniformly distributed
inputs, x ∈ U [−1, 1], the results of MCALIB analysis will only be relevant for this
domain. Once the input domain has been determined the trials must be executed and
the output data collected. An important consideration for Monte Carlo methods is the
number of trials to be performed, this number being directly affected by the sampling
methodology in use. For the purposes of MCALIB simplified random sampling has been
implemented and it is recommended that a minimum of 100 trials be performed for any
experiments. Decreasing the number of trials performed may have adverse effects on the
results of analysis using techniques as shown in Section 5. As can be seen in Figures 1
and 2 decreasing the number of trials will adversely affect the results, the standard
deviation and the calculated value of K do not converge until approximately N = 50.
The recommended number of samples is based on experimental results presented in
this paper, worst case sample size considerations [Hammersley and Handscomb 1964,
Chapter 3], and experimental data presented in [Parker 1997]. While the recommend
number of samples may appear high, it is believed that this figure can be reduced using
techniques such as Quasi Monte Carlo Simulation. This will be the subject of future
research.

4.3.4. Results Analysis. Having performed the required number of experiments and
collected the relevant output data the next stage of the MCALIB work flow is results
analysis. Using the methods described in the next section results of MCA trials may
be analysed to determine the total number of digits lost to rounding error and the
minimum precision required in order to avoid a total loss of significance. If no valid
results are available then the virtual precision range should be widened, particularly at
the top end, to collect more data at more stable precision values. If the normality tests
fail consistently the developer should return to step 1 to re-analyse the algorithm and
ensure that the input domain and outputs are being monitored correctly.

5. ANALYSIS OF MCA RESULTS
In previous publications [Parker 1997] the analysis of MCA results has been limited
to determining the number of significant digits, and pass/fail analysis performed by
comparing the mean and standard deviation of MCA results. We feel that this approach
can be expanded and more formally defined in order to provide a more rigorous defini-
tion of sensitivity to rounding error in MCA results, allowing analysts to draw more
meaningful conclusions from the results of MCA analysis. In this paper sensitivity to
rounding error is defined using two measurements:

— The number of base-2 significant digits lost due to rounding error, K
— The minimum precision required to avoid an unexpected loss of significance, tmin
We must first address the ideal case for error in MCA. If relative error is defined as in
Equation 2.1 then it has been noted in [Wilkinson 1994; Higham 1996; Goldberg 1990]
that the relative error is limited by δ ≤ 2−p for binary FP systems. From [Parker 1997,
page 19], the definition of relative error is used to determine the expected number of
significant binary digits available from a p-digit FP system:

δ ≤ 2−p (14)
p ≥ − log2(δ) (15)

These definitions may be adapted for MCA by replacing the precision of the FP system,
p, with the virtual precision, t, of an MCA operation. Thus the relative error δ in a
MCA operation for a virtual precision t is given by δ ≤ 2−t, and the expected number of
significant binary digits in a t-digit MCA operation is at least t. Using this definition a
proof has been provided [Parker 1997, page 23] giving the total significant binary digits

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 12 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:13

in a set of MCA results:

s′ = log2

µ

σ
(16)

Where µ is the mean and σ the standard deviation of the MCA results. Using the
definitions in this section the total number of significant digits lost in a MCA result set,
K, may be defined as follows:

K = t− s′ (17)

= t− log2(
µ

σ
) (18)

= log2(Θ) + t (19)

Where Θ = σ
µ → µ 6= 0 is the Relative Standard Deviation (RSD) of the MCA

results.

As noted by Sterbenz, [Sterbenz 1974, chapter 7], in an ideal case a linear relationship
exists between the precision of a FP system, p, and significant figures in the output.
Using MCA, this linear relationship exists between t and log(Θ). We identify the point
of departure as when the algorithm being analysed is affected in a non-linear way by
rounding error. We propose that the breakaway point in the linear model represents
tmin; the minimum precision required to avoid an unexpected loss of significance in the
results. In order to determine the the best fit of the relative error model results below,
outliers are not used in the calculation of K.

5.1. Linear Regression Analysis
In order to determine the value of tmin and K a linear regression with a log transformed
variable is used, with log(Θ) as the dependent variable and t as the exploratory variable
in the following form:

log10(Θ) = log10(2K−t) (20)
= − log10(2)t+ log10(2)K (21)
= mt+ c (22)

Where m = − log10(2) = −0.30103 is the slope and c is the intercept such that
K = log2(10c). Due to the requirement of detecting outlying results robust regression
methods are used to evaluate the linear model. The example presented in [Fox 2002]
performs robust regression using M-Estimation through the Iteratively Re-weighted
Least Squares (IRLS) approach for 2-D optimization. While this approach is ideal for
MCA analysis due to it’s insensitivity to outliers, the approach can be simplified to a
1-D optimization problem as the slope of the linear model is already known. Given a
set of MCA results for virtual precision values t ∈ [1, tmax] a summary set is created
by calculating Θ at each t value. It should be noted that while the samples used to
calculate an individual value for Θ are Independent and Identically Distributed (IID),
the complete sample set is not in general identically distributed. Given these inputs the
intercept c is calculated by minimizing the following objective function using Brent’s
method [Brent 1973] for single variable optimization;

f(x) =

tmax∑
i=1

γtmax−iρH(ei) (23)

where ei = Θi − (mti + c) is the residual error, c ∈ [(Θtmax
−mtmax)± 2m] is the initial

search space for the intercept, γ = 0.75 and ρH(e) is the Huber loss function [Huber

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 13 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:14 M. Frechtling & P.H.W. Leong

1964];

ρH(e) =

{
1
2e

2, for |e| ≤ k
k|e| − 1

2k
2, for |e| > k

(24)

where k = 1.345σ and σ is the standard deviation of the residual error set, e. Having
determined the linear model the outlying values of Θ are found by calculating a set of
predicted values Pt = mt+ c and comparing these to the values for Θ obtained via MCA.
If a value Θt differs from its equivalent predicted value, Pt, by more than half a binary
digit it is classed as an outlier. The breakaway point, tB is calculated by finding the
highest t value where |Pt −Θt| > log10(20.5). The value of tmin is then set to tB + 1.

5.2. Assumption of Normality and Conditions on Results
In order to perform analysis using the statistical methods listed in this chapter the
input data set is typically assumed to be normally distributed, however, in the case of
MCA no assumption of normality is made. This is explicitly stated by Parker [Parker
1997, p. 49] and is intended to allow for open ended statistical testing of MCA results.
In order to provide a strong estimate on the result of K and tmin the normality of the
sample set must first be verified for each value of t. This is determined on the raw
MCA data at each t step, requiring a total of tmax − tmin tests. This is done using the
Anderson-Darling test to asses the goodness of fit of the frequency distribution of results
to a normal distribution. If the test fails, warnings are provided on the plotted output of
the calculation and the result sets that have failed the test are removed and not used for
the calculation of K or tmin. The calculation of K and tmin must be done in conjunction
with bounds on the input space of the function or algorithm under investigation, i.e. the
results of the linear regression do not provide a guarantee of the error in an algorithm
in the general case, but rather an estimate of the accuracy of the algorithm under the
specific conditions tested using MCALIB.

6. TESTING & CASE STUDIES
Testing is performed by varying the virtual precision, 1 ≤ t ≤ p, and performing N
executions at each t value. For the tests conducted in this paper, unless stated otherwise,
we use t values from 1 to 53 and number of trials at each t value N = 100. In this section
we describe the programs used to test MCALIB.

6.1. Chebyshev Polynomials
Chebyshev polynomials [Rivlin 1990] are a series of orthogonal polynomials typically
used in approximation theory. In this case we have used Chebyshev polynomials of the
first kind, defined as follows:

T0(z) = 1 (25)
T1(z) = z (26)

Tn+1(z) = 2zTn(z)− Tn−1(z) (27)

Polynomials of the first kind can be represented as unique polynomials satisfying the
following trigonometric definition:

Tn(z) = cos(n cos−1(z)) (28)

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 14 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:15

ALGORITHM 3: Pairwise Summation Algorithm
Input: Vector X[1...n]
Output: Sum s of vector X
nmax = 1;
if n ≤ nmax then

s = X[1];
for i = 2 to n do

s = s + X[i];
end

else
m = floor(n / 2);
s = pw(X[1...m]) + pw(X[m+ 1...n]);

end
return s

ALGORITHM 4: Kahan Summation Algorithm
Input: Vector X[1...n]
Output: Sum s of vector X
s = 0.0;
c = 0.0;
for i = 1 to n do

y = X[i]− c;
t = s+ y;
c = (t− s)− y;
s = t;

end
Return s

In particular the T20(z) polynomial:

T20(z) = cos(20 cos−1(z)) (29)
= 52488z20 − 2621440z18 + 5570560z16

− 6553600z14 + 4659200z12 − 2050048z10

+ 549120z8 − 84480z6 + 6600z4

− 200z2 + 1 (30)

has been analysed by both Wilkinson [Wilkinson 1994] and Parker [Parker 1997],
who note that due to catastrophic cancellation occurring among the coefficients of the
expanded series the polynomial becomes ill-conditioned at the roots near z = ±1.

6.2. Summation Algorithm
FP summation is a widely used operation that sums a sequence of n FP values:

s =

n∑
i=1

xi, for n ≥ 3 (31)

Due to its widespread use in algebraic operations the accuracy of summation has been
analysed in various publications and it has been shown that the relative error of the
naive summation algorithm grows with order O(εn) [Linz 1970; Malcolm 1971; Higham
1993]. For this paper the naive approach is compared to two alternative summation
algorithms, the Pairwise [Higham 1993] and Kahan [Kahan 1965] summation

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 15 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:16 M. Frechtling & P.H.W. Leong

algorithms, shown in Algorithms 3 and 4. Both of these algorithms have been shown to
reduce numerical instability. In the case of Pairwise summation this is done using a
divide and conquer strategy that reduces the relative error to order O(ε log n) while
not increasing the number of arithmetic operations used. Kahan summation uses a
compensated sum to track round-off error during summation and reduces relative error
to order O(ε), but significantly increases the required number of arithmetic operations.

The naive, Kahan and pairwise sum methods are compared using a set of sample
values generated using the following [Sandu 2000]:

xi = 10−p (32)
p = dlog10(9i+ 1)− 1e (33)

for 1 ≤ i ≤ 1111.

6.3. Linear Algebra
Linear algebra subroutines are widely used in computer science and engineering.
Accurate implementation of these algorithms is essential. Their implementation
necessitates a large number of numeric operations and MCA is well suited for analysis
of the potential effects of rounding error. For the purposes of this paper we have tested
two implementations for determining the solution to a dense n × n system of linear
equations Ax = b.

The implementations used for testing are the LINear equations software PACKage
(LINPACK) benchmark [Dongarra et al. 2003], a tool which uses Gaussian Elimination
with partial pivoting as an example of a general engineering problem in order to test a
systems peak performance in terms of Floating Point Operations per Second (FLOPS),
and a standard implementation of LU decomposition with back substitution from
Numerical Recipes [Press et al. 2007]. Precision testing and error analysis have been
performed using the array size n = 100. With the value of A and b set using the matgen
method provided as part of the LINPACK implementation used in this test case [Toy
and Menninger 1994]. Statistical measurements were performed using the Euclidean,
(L2), norm of the result vector x[n], defined as follows:

||x|| :=
√
x21 + ...+ x2n (34)

6.4. L-BFGS Optimization
Limited memory Broyden, Fletcher, Goldfarb, Shanno (L-BFGS) optimization [Liu and
Nocedal 1989] is an implementation of quasi-Newton optimization using the Broyden,
Fletcher, Goldfarb, Shanno (BFGS) update method for approximation of the Hessian
Matrix. L-BFGS stores a finite number of vectors to represent the approximation, unlike
the original BFGS method which stores a dense n × n approximation. An important
part of this algorithm is the line search method, used to determine the local minimum
x∗ of an objective function f : Rn → R. The objective function used for testing in this
paper is the Rosenbrock function [Rosenbrock 1960], a well known convex function used
for performance testing of optimization systems. This function has been provided as
part of the L-BFGS implementation used for this paper [Liu and Nocedal 1989], and is
implemented for 10 dimensions using:

f(x) =

10∑
i=1

[(1− xi)2 + 100(xi+1 − x2i)2],∀x ∈ Rn (35)

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 16 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:17

0 10 20 30 40 50

1e
−

16
1e

−
11

1e
−

06
1e

−
01

1e
+

04

Chebyshev Polynomial − Analysis for z = 1.0

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

WARNING: Data rejected for t = 1:3, 52

MCA Data
MCA Outliers
Linear Model
Ideal
Abs. Mean
t_min = 19
K = 24

1
10

0
10

00
0

A
bs

ol
ut

e
M

ea
n

Fig. 3. Chebyshev Polynomial - Sensitivity to
rounding error at z = 1.0

0 10 20 30 40 50

1e
−

16
1e

−
11

1e
−

06
1e

−
01

1e
+

04

Comparison of Models for Chebyshev Polynomial

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

Ideal
z = 0.0
z = 1.0

Fig. 4. Chebyshev Polynomial - Comparison of re-
sults for z = 0.0 and z = 1.0

Table III. Results - Chebyshev Polynomial

Input - z Min. Req. Precision - tmin Sig. Fig. Lost - K
0.0 5 0.5
0.2 5 5.4
0.4 11 11.5
0.6 13 15.2
0.8 18 20.0
1.0 19 24.0

Note: Full Analysis of Chebyshev Polynomial

with the input vector x defined as follows;

x[i] =

{
1.2 if i is odd
10 if i is even

(36)

for i ∈ [1, 10]. The L-BFGS implementation used for testing provides a choice between 4
different line search methods, Moore-Thuente, Armijo, Wolfe and Strong Wolfe [Moré
and Thuente 1994; Dennis and Schnabel 1987] methods. Testing has been conducted for
all four line search methods and statistical measurements are again performed using
the Euclidean norm of the result vector.

7. RESULTS
In this section we present results of MCA analysis of several sample algorithms.
Throughout this section results of MCA analysis are presented using plots generated
via methods described in Section 5. The plots shown in Figures 3, 6, 8, and 10 provide
detail on the results of the linear regression analysis. These compare the linear model
with the ideal error case, (δ = 2−t), the experimental MCA results which were classified
as outliers are clearly marked, as well as a plot of the absolute mean, |µ| to allow the
mean to be checked in case it approaches zero. The plots are designed to provide a
method for quick visual inspection of the MCA results. Inside the legend the magnitude
of K, indicated by the distance between the linear model and the ideal case, and the

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 17 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:18 M. Frechtling & P.H.W. Leong

0.70 0.75 0.80 0.85 0.90 0.95 1.00

−
2

−
1

0
1

2

Chebyshev − Results of Precision Analysis

z

R
es

ul
t −

 f(
z)

t = 49 (Optimized)
t = 24 (Single Precision)

Fig. 5. Chebyshev Polynomial - Comparison of single (t = 24) and optimized (t = 49) precision.

Table IV. Results - Chebyshev Polynomial

Type t µ Θ
Single 24 0.9985 1.2119e+00

Optimized 49 1.0000 3.4492e-08

Note: Comparison of Single and Optimized
Precision Results for Chebyshev Polynomial
(using z = 1.0)

value of tmin, indicated by the position of the outlying data points, are given. The second
type of plot presented, (Figures 4, 7, 9, and 11), is designed to provide a comparison of
the different algorithms being tested. These plots compare the linear models generated
through analysis of the MCALIB results with the ideal error case.

7.1. Error Detection and Optimization of Sample Algorithms
One of the primary functions of MCA is to detect sensitivity to rounding error within
tested algorithms, indicated by a large variance in the results of repeated executions.
Using the relative error model and the methods detailed in Section 5, it is possible to
determine the overall sensitivity of tested algorithms to rounding error and to optimize
these algorithms by determining their minimum precision requirements.

For the Chebyshev Polynomial, testing has been conducted using input values for
z between 0 and 1 in steps of 0.2, conducting N = 100 executions for all t values
between 1 and 53 at each z step. Results for all cases are shown in Table III, results for
the worst case z = 1 are detailed in Figure 3 and results for the z = 0.0 and z = 1.0
cases are compared in Figure 4. Initially at z = 0 the sensitivity to rounding error is
negligible, as evidenced by a low value for tmin and less than 1 significant figure lost to
rounding error. As z is increased to approach the root at z = 1 the number of significant
figures decreases until, at the worst case point z = 1, 24 significant figures are lost to
rounding error. At this point the minimum precision required to avoid an unexpected
loss of significance in the results has risen to 19 bits. Having quantified the sensitivity
to rounding error for input values between 0 and 1, it is possible to use the values for

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 18 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:19

0 10 20 30 40 50

1e
−

16
1e

−
11

1e
−

06
1e

−
01

1e
+

04

L−BFGS − More Thuente Line Search Method

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

WARNING: Data rejected for t = 1:4, 7, 12:53

MCA Data
MCA Outliers
Linear Model
Ideal
Abs. Mean
t_min = 48
K = 8.8

5
10

15
20

A
bs

ol
ut

e
M

ea
n

Fig. 6. L-BFGS Optimization - Analysis of More-
Thuente line search method

0 10 20 30 40 50

1e
−

16
1e

−
11

1e
−

06
1e

−
01

1e
+

04

Comparison of line search methods for L−BFGS Opt.

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

Ideal
More−Thuente
Wolfe

Fig. 7. L-BFGS Optimization - Comparison of
More-Thuente & Wolfe line search methods

Table V. Analysis of L-BFGS Optimization

Search Type Min. Req. Precision - tmin Sig. Fig. Lost - K
More-Thuente 48 8.7
Wolfe 19 8.9
Str. Wolfe 36 8.8
Armijo 53 8.9

Note: Analysis of Line Search Methods for L-BFGS Optimization

K and tmin to optimize this algorithm and determine the precision level required to
achieve results normally expected from single precision FP operators. Previously this
was often achieved by simply switching to double precision FP operators. MCALIB
allows for the effects of rounding error to be quantified and this information used to
determine a required precision level. This can be done by simply adding the expected
number of digits lost to the required precision level, 24 in this case, and ensuring the
resulting value is greater than or equal to tmin. Table III shows that a precision of at
least 19 bits is required, and due to the expected loss of significant figures for the worst
case input, K = 24.02, a precision of dp+Ke = 49 is required. The results of comparison
testing between t values of 24 (single precision), and 49, (optimized precision), are
shown in Table IV. These results have been produced using the worst case input, z = 1.
It can be seen that the relative standard deviation is 108 times lower for the optimized
case, and is the same order of magnitude as the maximum relative error expected
from single precision arithmetic, (δ = 2−24 ≈ 6 × 10−8). Figure 5 plots the results of
the Chebyshev polynomial for both single (t = 24) and optimized (t = 49) precision
calculated using MCALIB. From this plot the difference between the two precision
levels can be seen. A precision level of 49 results in a smooth curve, while using a level
of 24 results in a random spread of points.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 19 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:20 M. Frechtling & P.H.W. Leong

0 10 20 30 40 50

1e
−

16
1e

−
12

1e
−

08
1e

−
04

1e
+

00

Summation Algorithm − Analysis of Pairwise Method

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

WARNING: Data rejected for t = 53

MCA Data
MCA Outliers
Linear Model
Ideal
Abs. Mean
t_min = 1
K = 1.6

4.
0

4.
5

5.
0

5.
5

A
bs

ol
ut

e
M

ea
n

Fig. 8. Summation Algorithm - Analysis of Pair-
wise Summation Method

0 10 20 30 40 50

1e
−

16
1e

−
12

1e
−

08
1e

−
04

1e
+

00

Comparison of models for Summation Algorithm

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

Ideal
Pairwise
Naive

Fig. 9. Summation Algorithm - Comparison of Re-
sults for Pairwise and Naive Algorithms

Table VI. Analysis of Summation Algorithms

Algorithm Type Min. Req. Precision - tmin Sig. Fig. Lost - K
Naive 7 7
Kahan 7 7
Pairwise 1 1.6

Note: Summation Algorithm Results - Naive, Kahan & Pairwise

7.2. Comparison of Single and Double Precision Floating Point Formats
A simpler form of error analysis that may be performed with MCALIB is the comparison
of single and double floating point operators. In this case an individual algorithm maybe
tested in order to determine if the single precision floating point format is sufficient for
the given input domain, or if double precision type operators are required. This type
of analysis has been used to determine the sensitivity to rounding error of different
line search algorithms as used in L-BFGS optimization of the n-dimension Rosenbrock
function, allowing for both the comparison of line search methods and the selection
of single or double precision operators for the tested input domain. The results of
error analysis for all four line search methods are shown in Table V. The results of
testing the More-Thuente line search are plotted in Figure 6 and results for the More-
Thuente and Wolfe line search methods are compared in Figure 7. From the results
table it can be seen that all four line search methods lose approximately 9 significant
figures to rounding. This result coupled with the results for tmin indicates that single
precision floating point operators are insufficient for this algorithm, however, it can
be seen from the warning on the bottom left of Figure 6, a total of 47 data points have
been rejected due to non-normality of the data set. This is most likely caused by the
iterative nature of the algorithm under investigation, and the fact that the optimization
process is attempting to find a solution within an error bound of 2−53. Given that the
virtual precision of the MCA operators is varied between 1 and 53 the error analysis
method is having an adverse affect on the accuracy of the solution. For the purposes of
demonstration the non-normal data points have been forcefully included in the results
analysis, but in practice these results are not viable and the experimental conclusions

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 20 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:21

0 10 20 30 40 50

1e
−

16
1e

−
12

1e
−

08
1e

−
04

1e
+

00

LINPACK − Result L2 Norm v. Precision

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

WARNING: Data rejected for t = 1:16, 24, 31

MCA Data
MCA Outliers
Linear Model
Ideal
Abs. Mean
t_min = 17
K = 7.3

10
.0

00
0

10
.0

01
0

10
.0

02
0

A
bs

ol
ut

e
M

ea
n

Fig. 10. Analysis of LINPACK benchmark

0 10 20 30 40 50

1e
−

16
1e

−
12

1e
−

08
1e

−
04

1e
+

00

Comparison of models for Linear Algebra

Virtual Precision (t)

R
el

at
iv

e
S

td
. D

ev
.

Ideal
LU Decomp. w. Back Sub.
LINPACK

Fig. 11. Analysis of LINPACK Benchmark

Table VII. Comparison of Linear Solvers

Algorithm Type Min. Req. Precision - tmin Sig. Fig. Lost - K
LU Decomp. w. Back Sub. 17 7.1
LINPACK 17 7.3

Note: Linear Solvers - Comparison of LINPACK and LU Decomposition with Back
Substitution

should be rejected. As such, while these results indicate the possibility that single
precision FP is not suitable for the tested input domain, further analysis is required.

7.3. Comparison of Algorithm Implementations
In addition to performing an analysis of individual algorithms s demonstrated in
the previous section, MCALIB can be used to compare competing algorithms or
implementations in order to determine the best approach. The first set of algorithms
tested are algorithms for FP summation, including the Naive, Kahan and Pairwise
algorithms. The results of analysis for all three algorithms are shown in Table VI, the
results of analysis of the Pairwise method are detailed in Figure 8 and the results for
the Pairwise and Naive methods are compared in Figure 9. From these results it can
be seen that all three algorithms demonstrate low sensitivity to rounding error. The
Pairwise method demonstrates significantly lower sensitivity to rounding errors when
compared with the alternative methods. This is evident in the lower value for tmin,
with a result of 4 for the Pairwise algorithm versus 11 and 10 for the Kahan and Naive
methods respectively. The Pairwise method is also losing less than 2 significant digits
to rounding error, compared with the 7 significant digits lost for the Naive and Kahan
methods. While all three methods demonstrate low sensitivity to rounding error and
may be analysed using single precision operators, the Pairwise method provides the
best approach for floating point summation for the tested input domain, (as detailed in
Section 6.2).

This same type of analysis has also been used to compare a linear solver from Numer-
ical Recipes [Press et al. 2007] with the one in the LINPACK benchmark [Dongarra

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 21 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:22 M. Frechtling & P.H.W. Leong

et al. 2003]. The results for analysis of the two algorithms are shown in Table VII, the
results of analysis of the LINPACK benchmark are detailed in Figure 10 and results for
both implementations are compared in Figure 11. As was the case with the summation
algorithms, both algorithms show a low level of sensitivity to rounding error and the
result for tmin for both methods indicates that single precision formats are suitable for
use with the tested input domain.

The error analysis results also clearly indicate a similar level of sensitivity to rounding
error available in both algorithms, this being demonstrated by the approximately 7
significant figures lost to rounding error in both cases. The overall effect of rounding
error on the results for the LINPACK benchmark can be seen in Figure 10. As the
virtual precision is increased beyond t = 17 the relative standard deviation decreases
exponentially forming a linear relationship with the virtual precision. These results can
also be produced using single precision floating point operators if necessary. However,
the values for tmin and K indicate that the algorithm becomes highly sensitive to
rounding error if the precision is decreased below 17. Furthermore if the required
significance of the results must be equivalent to single precision FP, a precision of
dp+Ke = 32 is recommended when using these algorithms on the tested input domain.

8. CONCLUSIONS
The MCP approach presented in this paper allows users to gain en empirical sense of
the effects of rounding on the output of a program for a given input. It’s application is
facilitated by MCALIB, an open source tool which applies source to source compilation
to rewrite FP operators to call our MCA library. Furthermore analysis techniques for
better interpretation of MCA results have been presented, results being summarized
by tmin and K. These expand the use of MCA and further demonstrate the benefit of
this type of analysis for evaluating FP SW. Further work in this area will focus on
investigating the use of quasi Monte Carlo techniques to reduce the required number of
trials, and the use of MCA analysis to facilitate mixed precision implementations.

9. ACKNOWLEDGEMENTS
We would like to thank Dr Reiichiro Kawai at The University of Sydney School of
Mathematics and Statistics for his assistance in with the results analysis in section 5.
We would also like to thank the anonymous reviewers, and associate editor Dr. Michael
Burke for their assistance in improving this manuscript.

REFERENCES
A. Amaricai, M. Vladutiu, and O. Boncalo. 2009. Design of Floating Point Units for Interval Arithmetic. In

Research in Microelectronics and Electronics, 2009. PRIME 2009. Ph.D. 12 –15.
J. Asserrhine, J.M. Chesneaux, and J.L. Lamotte. 1995. Estimation of Round-Off Errors on Several Computer

Architectures. Journal of Universal Computer Science 1, 7 (1995), 455–468.
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David

Monniaux, and Xavier Rival. 2002. Design and Implementation of a Special-Purpose Static Program
Analyzer For Safety-Critical Real-Time Embedded Software. The Essence of Computation (2002), 85–108.

Richard P Brent. 1973. Algorithms for Minimization without Derivatives. Courier Dover Publications.
H. Brönnimann, G. Melquiond, and S. Pion. 2006. The Design of the Boost Interval Arithmetic Library.

Theoretical Computer Science 351, 1 (2006), 111–118.
Ashley W Brown, Paul HJ Kelly, and Wayne Luk. 2007. Profiling Floating Point Value Ranges for Recon-

figurable Implementation. In Proceedings of the 1st HiPEAC Workshop on Reconfigurable Computing.
6–16.

Ashley W Brown, Paul HJ Kelly, and Wayne Luk. 2008. Profile-Directed Speculative Optimization of Recon-
figurable Floating Point Data Paths. In Proceedings of the Workshop on Reconfigurable Computing at
HiPEAC.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 22 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:23

R. Chotin and H. Mehrez. 2002. A Floating-Point Unit using Stochastic Arithmetic Compliant with the
IEEE-754 Standard. In Electronics, Circuits and Systems, 2002. 9th International Conference on, Vol. 2.
603 – 606 vol.2.

George A Constantinides. 2003. Perturbation Analysis for Word-Length Optimization. In Field-Programmable
Custom Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on. IEEE, 81–90.

George A Constantinides. 2006. Word-Length Optimization for Differentiable Nonlinear Systems. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 11, 1 (2006), 26–43.

George A Constantinides, Peter YK Cheung, and Wayne Luk. 2001. The Multiple Wordlength Paradigm. In
Field-Programmable Custom Computing Machines, 2001. FCCM’01. The 9th Annual IEEE Symposium
on. IEEE, 51–60.

George A Constantinides, Peter YK Cheung, and Wayne Luk. 2002. Optimum Wordlength Allocation. In
Field-Programmable Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE Symposium on.
IEEE, 219–228.

George A Constantinides, Peter YK Cheung, and Wayne Luk. 2003. Wordlength Optimization for Linear
Digital Signal Processing. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 22, 10 (2003), 1432–1442.

Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2002. Iterative Dataflow Analysis, Revisited. Proceed-
ings of the (PLDI’02) (2002).

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceedings
of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 269–282.

Marc Daumas and Guillaume Melquiond. 2010. Certification of bounds on expressions involving rounded
operators. ACM Transactions on Mathematical Software (TOMS) 37, 1 (2010), 2.

L.H. de Figueiredo and J. Stolfi. 2004. Affine Arithmetic: Concepts and Applications. Numerical Algorithms
37, 1 (2004), 147–158.

David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Védrine. 2009. Towards
an Industrial use of FLUCTUAT on Safety-Critical Avionics Software. Formal Methods for Industrial
Critical Systems (2009), 53–69.

David Delmas and Jean Souyris. 2007. Astrée: From Research to Industry. Static Analysis (2007), 437–451.
J.E. Dennis and R.B. Schnabel. 1987. Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. Vol. 16. Society for Industrial Mathematics.
Alain Deutsch. 2003. Static Verification of Dynamic Properties. PolySpace White Paper (2003).
J.J. Dongarra, P. Luszczek, and A. Petitet. 2003. The LINPACK Benchmark: Past, Present and Future.

Concurrency and Computation: Practice and Experience 15, 9 (2003), 803–820.
Floating-point Working Group. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008

(2008), 1 –58.
Ian Foster and Stephen Taylor. 1994. A compiler approach to scalable concurrent-program design. ACM

Transactions on Programming Languages and Systems (TOPLAS) 16, 3 (1994), 577–604.
L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A Multiple-precision Binary

Floating-point Library with Correct Rounding. ACM Transactions on Mathematical Software (TOMS) 33,
2 (2007), 13.

John Fox. 2002. Robust Regression. An R and S-Plus companion to applied regression (2002).
Michael Frechtling and Philip H.W. Leong. 2013. An FPGA-based floating point unit for

rounding error analysis. In Transforming Reconfigurable Systems, Wayne Luk and George
Constantinides (Eds.). Imperial College Press, Imperial College, London. (To appear),
http://www.ee.usyd.edu.au/people/philip.leong/UserFiles/File/papers/mca icpress13.pdf.

Altaf Abdul Gaffar, Wayne Luk, Peter YK Cheung, Nabeel Shirazi, and James Hwang. 2002. Automating
Customisation of Floating-Point Designs. In Field-Programmable Logic and Applications: Reconfigurable
Computing Is Going Mainstream. Springer, 523–533.

Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. 2004. Unifying Bit-Width Optimisation for Fixed-Point
and Floating-Point Designs. In Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on. IEEE, 79–88.

A Abdul Gaffar, Oskar Mencer, Wayne Luk, Peter YK Cheung, and Nabeel Shirazi. 2002. Floating-Point
Bitwidth Analysis via Automatic Differentiation. In Field-Programmable Technology, 2002.(FPT). Pro-
ceedings. 2002 IEEE International Conference on. IEEE, 158–165.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 23 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

XX:24 M. Frechtling & P.H.W. Leong

David Goldberg. 1990. Computer Arithmetic. Computer Architecture: A Quantitative Approach, David Patter-
son and John L. Hennessy, Eds. Morgan Kaufmann, Los Altos, Calif., Appendix A (1990).

F. Goualard. 2006. GAOL: Not Just Another Interval Arithmetic Library. (2006).
E. Goubault and S. Putot. 2006. Static Analysis of Numerical Algorithms. Static Analysis (2006), 18–34.
John Michael Hammersley and David Christopher Handscomb. 1964. Monte carlo methods. Vol. 1. Springer.
N.J. Higham. 1993. The Accuracy of Floating Point Summation. SIAM Journal on Scientific Computing 14, 4

(1993), 783–799.
Nicholas J Higham. 1996. Accuracy and Stability of Numerical Algorithms. Number 48. Siam.
William E. Howden. 1980. Applicability of software validation techniques to scientific programs. ACM

Transactions on Programming Languages and Systems (TOPLAS) 2, 3 (1980), 307–320.
Peter J Huber. 1964. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics 35, 1

(1964), 73–101.
François Irigoin, Pierre Jouvelot, and Rémi Triolet. 1991. Semantical interprocedural parallelization: An

overview of the PIPS project. In Proceedings of the 5th international conference on Supercomputing. ACM,
244–251.

F. Jézéquel and J.M. Chesneaux. 2008. CADNA: A Library for Estimating Round-off Error Propagation.
Computer Physics Communications 178, 12 (2008), 933–955.

W. Kahan. 1965. Pracniques: Further Remarks on Reducing Truncation Errors. Commun. ACM 8, 1 (1965),
40.

William Kahan. 1996. The improbability of probabilistic error analyses for numerical computations. In UCB
Statistics Colloquium, evans hall edition. 20.

W Kahan. 2006. How Futile are Mindless Assessments of Round-off in Floating Point Computation.
http://www.cs.berkeley.edu/∼wkahan/Mindless.pdf.

Gary A Kildall. 1973. A Unified Approach to Global Program Optimization. In Proceedings of the 1st annual
ACM SIGACT-SIGPLAN symposium on Principles of programming languages. ACM, 194–206.

R. Klatte and G.F. Corliss. 1993. C-XSC: A C++ Class Library for Extended Scientific Computing. Springer-
Verlag.

W. Krämer. 2007. Generalized Intervals and the Dependency Problem. PAMM 6, 1 (2007), 683–684.
William K Lam. 2005. Hardware Design Verification: Simulation and Formal Method-Based Approaches

(Prentice Hall Modern Semiconductor Design Series). Prentice Hall PTR.
D-U Lee, A Abdul Gaffar, Ray CC Cheung, Oskar Mencer, Wayne Luk, and George A Constantinides.

2006. Accuracy-Guaranteed Bit-Width Optimization. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 25, 10 (2006), 1990–2000.

Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. 2005. MiniBit: Bit-Width Optimization via
Affine Arithmetic. In Proceedings of the 42nd annual Design Automation Conference. ACM, 837–840.

P. Linz. 1970. Accurate Floating-Point Summation. Commun. ACM 13, 6 (1970), 361–362.
D.C. Liu and J. Nocedal. 1989. On the Limited Memory BFGS Method for Large Scale Optimization. Mathe-

matical programming 45, 1 (1989), 503–528.
M.A. Malcolm. 1971. On Accurate Floating-Point Summation. Commun. ACM 14, 11 (1971), 731–736.
David Monniaux. 2008. The pitfalls of verifying floating-point computations. ACM Transactions on Program-

ming Languages and Systems (TOPLAS) 30, 3 (2008), 12.
J.J. Moré and D.J. Thuente. 1994. Line Search Algorithms with Guaranteed Sufficient Decrease. ACM

Transactions on Mathematical Software (TOMS) 20, 3 (1994), 286–307.
Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefevre,

Guillaume Melquiond, Nathalie Revol, and Damien Stehle. 2009. Handbook of Floating-Point Arithmetic.
G. Necula, S. McPeak, S. Rahul, and W. Weimer. 2002. CIL: Intermediate Language and Tools for Analysis

and Transformation of C Programs. In Compiler Construction. Springer, 209–265.
Thi Viet Nga Nguyen and François Irigoin. 2005. Efficient and effective array bound checking. ACM Transac-

tions on Programming Languages and Systems (TOPLAS) 27, 3 (2005), 527–570.
William G Osborne, Ray CC Cheung, José Gabriel F Coutinho, Wayne Luk, and Oskar Mencer. 2007.

Automatic Accuracy-Guaranteed Bit-Width Optimization for Fixed and Floating-Point Systems. In Field
Programmable Logic and Applications, 2007. FPL 2007. International Conference on. IEEE, 617–620.

Douglass Stott Parker. 1997. Monte Carlo Arithmetic: exploiting randomness in floating-point arithmetic.
Computer Science Department, University of California.

Douglass Stott Parker. 2003. Monte Carlo Arithmetic. (Oct. 2003). http://www.cs.ucla.edu/∼stott/mca/.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 24 of 25Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

MCALIB - Measuring Sensitivity to Rounding Error with Monte Carlo Programming XX:25

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. 2007. Numerical recipes 3rd
edition: The art of scientific computing. Cambridge university press.

Theodore J Rivlin. 1990. Chebyshev Polynomials. From Approximation Theory to Algebra and Number
Theory. Pure Appl. Math.(NY) (1990).

Howard H Rosenbrock. 1960. An Automatic Method for Finding the Greatest or Least Value of a Function.
Comput. J. 3, 3 (1960), 175–184.

A Sandu. November 2000. CSE-690 Home Project 2. www.cs.vt.edu/∼asandu/Courses/MTU/CSE690/proj-2.ps.
M.J. Schulte and Jr. Swartzlander, E.E. 2000. A Family of Variable-precision Interval Arithmetic Processors.

Computers, IEEE Transactions on 49, 5 (may 2000), 387 –397.
Pat H Sterbenz. 1974. Floating-Point Computation. Vol. 26. Prentice-Hall Englewood Cliffs, NJ.
J.E. Stine and M.J. Schulte. 1998. A Combined Interval and Floating Point Multiplier. In VLSI, 1998.

Proceedings of the 8th Great Lakes Symposium on. 208 –215.
Bonnie Toy and Will Menninger. 1994. C Implementation of the LINPACK Benchmark. (Feb. 1994). http:

//www.netlib.org/benchmark/linpackc.new
J. Vignes. 1996. A Stochastic Approach to the Analysis of Round-off Error Propagation. A Survey of the

CESTAC Method. In Proc. 2nd Real Numbers and Computers conference. 233–251.
GW Walster and D. Chiriaev. 2000. Interval Arithmetic Programming Reference: Forte TM Workshop 6

Update 1 C++. Sun Microsystems Inc (2000).
James H. Wilkinson. 1994. Rounding Errors in Algebraic Processes. Dover Publications, Incorporated.
JHC Yeung, EFY Young, and PHW Leong. 2011. A Monte-Carlo Floating-Point Unit for Self-validating

Arithmetic. In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. 199–208.

Received July 2013; revised March 2014; accepted June 2014

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Article XX, Publication date: June 2014.

Page 25 of 25 Transactions on Programming Languages and Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

