
Modular Exponentiation using Parallel Multipliers

S.H. Tang, K.S. Tsui and P.H.W. Leong
{shtang,kstsui}@alumni.cse.cuhk.edu.hk, phwl@cse.cuhk.edu.hk

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT, Hong Kong

Abstract

A field programmable gate array (FPGA) semi-systolic
implementation of a modular exponentiation unit, suitable
for use in implementing the RSA public key cryptosystem is
presented. The design is carefully matched with features of
the FPGA architecture, utilizing embedded 18×18-bit mul-
tipliers on the FPGA and employing a carry save addition
scheme. Using this architecture, a 1024-bit modular expo-
nentiation can operate at 90 MHz on a Xilinx XC2V3000-6
device and perform a 1024-bit RSA decryption in 0.66 ms
with the Chinese Remainder Theorem.

1 Introduction

The RSA algorithm is the most widely used public key
cryptosystem and modular exponentiation of long integers
is the primary operation required in its computation. Since
RSA is often the bottleneck for e-Commerce servers, there
has been great interest in finding efficient techiques to per-
form long modular exponentiation.

Field-Programmable Gate Arrays (FPGAs) are hardware
devices which are reconfigurable, i.e. programming an
FPGA can change its functionality. Implementations of
cryptographic hardware using FPGAs offer higher perfor-
mance than software implementations since higher degrees
of parallelism can be achieved. Compared with traditional
implementations using application specific integrated cir-
cuits (ASICs), FPGAs offer several advantages:

• With FPGAs, it is possible to reconfigure the chip for
different encryption standards on demand. This means
that unused encryption schemes need not reside on the
FPGA, saving resources. In contrast, all supported en-
cryption schemes must reside on an ASIC.

• It is possible to offer field upgrades for FPGA based
systems to support bug fixes and new standards.

• FPGAs offer lower costs for small volumes, shorter de-
velopment times and faster time to market over ASIC
technology.

• The performance of an FPGA implementation can be
improved by replacing an existing device with a faster
one and does not involve any further engineering.

FPGA-based RSA processors have been previously re-
ported. In 1993, Shand and Vuillemin built a RSA im-
plementation which used 16 Xilinx XCV3090 devices and
achieved a decryption speed of 165 kb/s for a 1024-bit
key [13]. It used a number of optimization techniques in-
cluding the Chinese Remainder Theorem, precomputation
of small powers, Hensel’s odd division, Karatsuba multi-
plication, squaring optimization, a carry completion adder
and quotient pipelining. The design was the fastest RSA
implementations for many years. In 2001 [1], Blum and
Paar proposed a systolic architecture using a single Xilinx
XC40250XV-09 device which performed 1024-bit decryp-
tion at 330 kb/s.

In this work, a modular exponentiation architecture is
presented which takes advantage of recent features incor-
porated in FPGA devices. Specifically, the 18×18-bit mul-
tipliers embedded in the Xilinx Virtex II series devices were
used to speed up computation of partial products in a Mont-
gomery multiplier, and a semi-systolic pipeline scheme
were employed to maximize the clock rate and parallelism
achieved. The radix employed is much higher than previous
designs, resulting in fewer clock cycles and hence higher
performance. The design was able to achieve a thoughput of
1.51 Mb/s on a Xilinx XC2V4000-6 device, approximately
four times faster than the previously best reported figure [1].

The rest of this paper is organized as follows. In Sec-
tion 2, the RSA algorithm [12] is introduced. Section 3 is an
overview of the design philosophy employed. Section 4 de-
scribes the algorithms used in the implementation including
modular exponentiation and multiplication. Section 5 looks
into the architectural issues and gives a hardware structural
design of the RSA processor. Results are presented in Sec-

〈a〉b a mod b
h Exponent (E) size in bits.
k Modulus (M) size in bits.
r Radix size in bits.
β radix = 2r

s0 Least significant digit of S = 〈S〉β
n Modulus size in digits.

Table 1. Notation used in this paper.

tion 6 and conclusions drawn in Section 7. Table 1 is a
summary of the notation used throughout this paper.

2 The RSA Algorithm

Suppose Alice wishes to send a secret message to Bob.
In a secret key system, Alice and Bob need to know the
same secret key and so it must be communicated via some
secure channel. In a public key system, Bob broadcasts his
public key and Alice can use it to encode a message. The
design of the cryptosystem is such that only Bob can decode
the encrypted message, but no exchange of secret keys is
necessary.

In the RSA cryptosystem, Alice must first find Bob’s
public key M,E which are the modulus and exponent re-
spectively. She calculates the cipher-text (C) from the plain-
text (P) by:

C = PE (mod M) (1)

To decode the message, Bob uses his private key (D) to
recover the plain text by:

P = CD (mod M) (2)

To generate the key, two large prime numbers P and Q
are first generated, and two equations are used to calculate
D, E and M :

M = PQ
DE ≡ 1 (mod (P − 1)(Q− 1))

(3)

where E is relatively prime to (P − 1)(Q− 1). In prac-
tice, E is often chosen to be a small number such as 216 + 1
which reduces the amount of computation required to per-
form encryption. The strength of RSA depends on the key
size k, the number of bits in M .

Breaking RSA is believed to be as hard as factorizing
M to P,Q, which is intractable for k ≥ 1024 with current
technology.

Generally, it takes a considerable time for RSA decryp-
tion due to the very large exponent. Chinese Remainder
Theorem (CRT) can be applied to speed up decryption 4
times with minimal hardware addition. CRT makes use of

the secret factors P,Q to break a 1024-bit (for example)
modulusM and exponentE in modular exponentiation into
two halves, each roughly 512-bits long, (depending on size
of P,Q). The result of RSA decryption P is defined by the
following steps [5].

T1 = CD1 (mod P) , D1 = 〈D〉P−1

T2 = CD2 (mod Q) , D2 = 〈D〉Q−1

P = T1 + 〈(T2 − T1)× (P−1 mod Q)〉Q × P
(4)

Halving the modulus size makes the modular multiplier
2× faster and 50% smaller. Thus compared with a non-
CRT implementation, it allows for the use of two smaller
units in parallel (to calculate T1, T2). Halving the exponent
size makes another 2× speedup. In total, a 4× speedup can
be achieved with the same chip area.

3 Design Considerations

The encryption and decryption process in RSA cryptog-
raphy requires the computation of a modular exponentia-
tion. This in turn requires an efficient implementation of
modular multiplication.

The number A in radix β can be represented as a se-
quence of digits ai as follows:

A = [an−1 . . . a0]β =
n−1∑

i=0

aiβ
i

In such a case, a standard serial n-digit multiplication
requires O(n2) [4] single digit multiplications. In a serial-
parallel hardware design processing n digits in parallel, the
number of cycles increases linearly with n. Given a fixed
operand size, increasing the radix size decreases the number
of digits. Hence, doubling the radix size halves the number
of cycles.

While it is common to use radixes greater than 2 to re-
duce the number of clock cycles, previous hardware imple-
mentations (FPGA and ASIC) used a relatively low radix
because the area of the resulting implementation grows
rapidly with radix size. The number of logic levels and
hence the maximum clock frequency is also reduced as the
radix is increased. Shand [13] and Orup [11] used radices of
22 and 25 respectively, while Blum [1] used a radix of 24,
implementing the multiplier using a look-up table (LUT).
In contrast, software implementations often use radices 232

or 264 to take advantage of 32 or 64-bit multipliers respec-
tively.

The introduction of dedicated multipliers in FPGAs such
as the Xilinx Virtex II and Altera Stratix devices provides an
opportunity to use a high radix without the area and perfor-
mance issues described above. A Virtex-II FPGA chip can
have up to 168 18-bit signed multipliers evenly distributed

2

in the LUT matrix [15], and the speed and area of these mul-
tipliers are much better than that which could be expected
from an implementation using the FPGA’s logic resources.
In the design described in this paper, a radix of β = 217 was
chosen so that unsigned arithmetic could be used thoughout
the design, and smaller radices could be used for testing.

4 Algorithm

In this section, the algorithms used in the design are pre-
sented in a top-down fashion.

4.1 Modular Exponentiation

Algorithm 1 L-R Binary method.

Input: E =
∑h−1
i=0 ei × 2i

(Binary representation of E = [eh−1 . . . e0]2)
Output: P = CE

P <= 1
for i = h− 1 . . . 0 do
P <= P × P
if ei = ‘1′ then
P <= P × C

end if
end for

The L-R binary method [4] was used for exponentation.
For every bit in the exponent, P is squared (corresponding
to doubling the index) and if the current bit of exponent is
’1’, a multiplication with C is performed (corresponding to
adding 1 to the index). Squaring is performed by ordinary
multiplication. The total number of multiplications is 3

2h
(where h is defined in Table 1), assuming the exponent has
an equal ratio of ’1’ and ’0’ bits.

The multiplier output P is always passed to one of the
inputs of next step, while the other input is either one of P
or C. This leads to to a very simple datapath (figure 7).

In modular exponentation, every intermediate product is
immediately reduced before being passed to the next step.
The size of every operation stays within the range [0,M).

Shand [13, 4] used a Star Chain to perform exponenti-
ation with a 1.3× speed up, over the L-R binary method.
However, a star chain has the disadvantage that one must
calculate the Star Chain for each different exponent, which
is an additional overhead.

4.2 Modular Multiplication

Montgomery’s method [9] provides an efficient way to
perform modular multiplication without reduction by the
modulus M , if M > 2 and M is odd. It transforms the

original M -residue to an R-residue, where R is deliber-
ately chosen as some power of 2, allowing divisions to be
replaced by shift operations. An additional input M ′ is
pre-computed as the negative modular inverse of M , i.e.
(−MM ′) mod R = 1.

An implementation of Montgomery’s method for RSA
typically interleaves multi-precision multiplication steps
with Montgomery’s reduction steps, thereby reducing the
number of multiplication operations. The interleaved ver-
sion of the algorithm listed below is taken from [6]:
Output: S = ABR−1 (mod M)

S <= 0
1: for i = 0 . . . n do
2: q <= 〈〈S〉β × 〈M ′〉β〉β
3: S <= (S + qM)/β + aiB
4: end for

There are two row-times-digit operations: ai × B and
q ×M . In line 2, the modulo operation extracts the least
significant digit. In line 3, division by β is implemented
with a right shift by one digit.

Montgomery Multiplication produces a result with an
unwantedR−1 factor. Therefore, pre-processing and a post-
processing steps are needed. In the following example, C10

is computed in the left column. The right column oper-
ates with the R−1 factor. As can be seen, preprocessing
step involves a Montgomery multiplication with R2 (exter-
nally precomputed) and the postprocessing is a multiplica-
tion with 1.

C2 <= (C)(C)
C4 <= (C2)(C2)
C5 <= (C4)(C)
C10 <= (C5)(C5)

CR<= (C)(R2)R−1

C2R<= (CR)(CR)R−1

C4R<= (C2R)(C2R)R−1

C5R<= (C4R)(CR)R−1

C10R<= (C5R)(C5R)R−1

C10 <= (C10R)(1)R−1

Orup [10] points out the possibility of simplifying the
operations in line 2 by pre-computing the product M ×
(M ′ mod β) = M̃ . The algorithm is rewritten as

1: for i = 0 . . . n do
2: q <= 〈S〉β
3: S <= (S + qM̃)/β + aiB
4: end for

An immediate consequence is the increase in range of M̃
by one digit, causing the range of output S to also increase
by one digit. The following proof shows that the output is
in the range [0, 2M̃] [2]:

Proof: Given input A,B ∈ [0, 2M̃], R > 4M̃

output S ∈ [0, 2M̃]

U = 〈AB〉R ⇒ U ∈ [0, R]

S = (UM̃ +AB)/R

< (UM̃ + (2M̃)2)/R

= (U + 4M̃)M̃/R

< (R+R)M̃/R = 2M̃

3

s,q

q m

s

axb

/β

s,q

qszaxb m

/β

/β

Figure 1. Diagram showing number of logic
levels for two different addition methods.

Line 3 of the algorithm requires S to be added to qM̃ before
the addition with aiB. As illustrated in the left hand part of
Figure 1, this is an undesirable constraint as it adds another
level to the logic in its implementation. Line 3 can be
rewritten as:

S <= S/β + qM̃/β + z + aiB (5)

Where z is the carry out of 〈S〉β + 〈qM̃〉β . Mont-
gomery’s reduction ensures that S + qM̃ is always divis-
ible by β. Thus 〈S〉β and 〈qM̃〉β has a carry z = 1 iff
qM̃ is non-zero. As M̃ is always non-zero, it is possible
to determine z by simply inspecting q. This allows the ad-
dition to be done in the order (S/β + aiB) + qM̃/β and
Figure 1 illustrates that fewer levels of logic are required.
Kornerup [6] and Orup [10] proposed a different method
which achieves the same result without conditional branch-
ing.

Algorithm 2 describes the final Montgomery Multiplica-
tion algorithm that was adopted.

Algorithm 2 Montgomery Multiplication.

Input: M̃ = M × (M ′ mod β), R = 4βn+1

Output: S = ABR−1 (mod M)
1: S <= 0
2: for i = 0 . . . n do
3: q <= 〈S〉β
4: if q = 0 then
5: S <= S/β + qM̃/β + aiB
6: else
7: S <= S/β + qM̃/β + aiB + 1
8: end if
9: end for

j=3 2 1 0

time

bj,mj
sj+1

q,a

(qm)j

φj-1,θj-1

s’j
bj,mj

(qm)j+1

φj,θj

θj = q ×mj/β
φj = a× bj/β
(qm)j = 〈q ×mj〉β + θj−1

(ab)j = 〈a × bj〉β + φj−1

sj = sj+1 + (qm)j+1 + (ab)j

Figure 2. DG graph for n=4.

5 Architecture

5.1 Processing Elements

In order to utilize many multipliers in parallel, a serial-
parallel multiplier was employed. That is, for the computa-
tion of A×B, aiB was computed per clock cycle.

A direct implementation of Algorithm 2 is unlikely to
be able to achieve a high operating frequency for 1024-bit
numbers. A systolic array [8] architecture was thus em-
ployed. Rewriting Algorithm 2 into digit-wise operations
of recursive equations, a dependency graph (DG) was de-
rived.

Figure 2 shows a single cell. As in Algorithm 2 it accepts
a, b, q,m as inputs. b,m are fixed for every cell so all digits
are input to all cells in parallel, and passed vertically. q, a
are the loop variants so they are input in a digit serial fash-
ion. Multiplication of two r-bit numbers produces a 2r-bit
partial product. φ and θ are the most significant digits of
the qmj and abj multiplications respectively and are passed
to the left cell. Line two of Algorithm 2 requires the com-
putation of s/β and qm/β. The division of β is done by
shifting s and qm one digit to the right. The output of the
right-most cell, s0, is taken as the quotient digit in of line 1
in algorithm. The output s appears at the bottom of the DG.
The DG was projected vertically to form the chain of PEs
as shown Figure 3.

4

cell cell

0 1

0

odd/even
 (n+1 digits shift register)

cellcellcell

n-2 n-1 n 0

q a

mux

Figure 3. A row of PEs showing data commu-
nications.

The existence of broadcasting in our design makes it
semi-systolic. Compared to fully systolic implementations
by Kornerup [7] or Blum [1], our clock frequency may be
hindered by the global signals. Since we use a large radix,
the number of digits is fewer and therefore the effect is di-
luted, and the performance is acceptable. A 1024-bit design
has a 10% lower clock frequency than a 512-bit design. On
the other hand, the semi-systolic approach does not need
extra registers for the signals and enjoys a shorter latency.

5.2 Carry Save Addition

As can be seen from the DG, two additions are required
to form S and two for the partial products qM̃ and aiB.
Thus each processing element must perform 4 additions.
Although we partition the 1024-bit row into n PEs (one for
each digit), the carry propagation path is not shown in the
DG. If the carry is propagated horizontally, it will result in
a 1024-bit ripple carry path.

A 1024-bit ripple-carry path, accelerated by Xilinx’s
carry chain [15], will result in the carry being broken into
four vertical columns. Measurements show that such an
adder has a delay of 70 ns1 and is a clear bottleneck in the
design.

A solution is to propagate the one-bit carry vertically to
the next iteration using a carry save adder. Since a division
by the radix is performed, the carry is propagated back to
the same PE. Hence a redundant representation, namely a
(one-bit-carry : r-bit-sum) tuple was used. A ripple-carry
adder is used for adding each digit, and the carry-out of
each digit is saved for the next cycle. This can be validated
by noticing that s is an accumulator, and is hence commu-
tative. At each iteration only the digit s0 is used for the
computation of the next iteration.

The redundant representation is restored to a unique po-
sitional representation at completion of modular multipli-
cation by using a carry completion circuit [13], an OR-gate
connected to the carry of all digits. The circuit keeps adding
the carries until there is no further carry-out from any digit.

1Timing and structure verified using Xilinx ISE 5.1 and XC2V3000-6
target device.

cell

a b m

sj (unlatched)

q

φ j ,θ j

sj+1

φj-1 ,θj-1

sj cell

φj ,θj

sj+1

φj-1 ,θj-1

sj

multiplexed input

sj (unlatched)

Figure 4. Time Multiplexed I/O of Cells.

 time = 2t time = 2t + 1 time = 2t + 2

M
u
l
t
i
p
l
i
e
r
 at*b0

�
(φ0t,i0t)

...

at*bk
�
(φkt,ikt)

...

at*bn
�
(φnt,int)

qt*m1
 �

(θ1t,j1t)
...

qt*mk
 �

(θkt,jkt)
...

qt*mn
 �

(θnt,jnt)
zt=(qt=0? 0:1)

(next iteration)

...

at+1*bk � (φkt+1,ikt+1)

A
d
d
e
r

1

(previous

iteration)

...

jk
t-1 +θk-1t-1 � vk

t-1

i0
t + zt

�
u0

t

i1
t + φ0t

�
u1

t

...

ik
t + φk-1t

�
uk

t
...

φnt
�
un+1

t

j1
t + θ0t

�
v1

t

...
jk

t + θk-1t
�
vk

t
...
θnt

�
vn+1

t
 �

u t

A
d
d
e
r

2

(previous

iteration)

...

wk
t-1 +vk+1

t-1 � sk
t

s0
t � qt

u0
t + s1

t
�
w0

t
...
uk

t + sk+1
t

�
wk

t

...
un+1

t
�
wn+1

t

w0
t + v1

t

�
s0

t+1
...
wk

t + vk+1
t

�
sk

t+1
...
wn+1

t
�
sn+1

t+1
s0

t+1
�
 qt+1

Superscript represents time and subscript represents space.

Figure 5. Timing diagram of 2-cycle pipelined
design.

In practice, only the very rare case in which there are more
than r-bits of consecutive set bits require more than one cy-
cle to complete the conversion.

5.3 Pipelining and Timing

Figure 1 shows that two cycles are needed for resolving
the data dependency in the computation of S. The schedule
of steps for the multipliers and adders are listed in figure 5.
In the description below, odd/even steps refer to the two
different types of cycles in this schedule.

By observing the similarity between the operations in the
first and second cycles, data-path components were reused,
in particular, sharing of arithmetic circuits (adders, multipli-
ers), registers and global routing paths was achieved. This
is served to minimize global routing resources, e.g. a mul-
tiplexed I/O was used to combine q, a into one port. The
same port can be used to feed m into the cells during ini-
tialization by using an extra cycle. The datapath design is
shown in figure 6.

5

MULT

x y

ADD1

ADD2

M
U
X

M
U
X

0

init

cout

cin

cin

cout

odd_even

read/write

address

reg2 reg1

regW

regS

17

17 17

17

17

17

17

17

1717

17 17

regYregX

φj ,θj

sj+1

φj-1 ,θj-1

sj

register
 file

bj, mj a, q

multiplexed input

sj (unlatched)

Figure 6. Datapath of Multiplier.

5.4 Datapath

MULT takes one parallel input ‘x’ and one digit-serial
input ‘y’. ‘x’ accepts inputs b and m, where b will be sub-
stituted for some other values in exponentiation. These val-
ues are initially stored in a register file in every cell. ‘y’
accepts broadcast, time-multiplexed input of q and a. As
in figure 3, a is supplied by a shift register, and q is passed
from the output of cell 0. MULT gives out a 34-bit product,
split into upper and lower digits. The upper digit (φ, θ) is
passed to the cell on the right. The upper and lower digits
are registered in reg1 and reg2.

ADD1 adds the partial products to produce u and v. The
carry-out is registered and passed as a carry-in for the next
iteration (corresponding to passing the carry vertically in
the DG graph). Because two cycles are used for one itera-
tion, the carry is latched twice so that carry of ut is added
to ut+1, and carry of vt is added to vt+1. Cell 0 does an
additional check on q and asserts the carry-in if q 6= 0 (not
shown in diagram).

R2

Ei

Modular
Multiplier

Host

Modular
Exponentiator

k

h

ba

s

P
CR
C

P

m

address, control

M
k

k k

control

unit

1

The register files at input a, b correspond to the content of shift register in
figure 3 and register file inside PE in figure 6 respectively. The operands
C, P and R can be referred to algorithm 1 and the example of C10 at
section 4.2.

Figure 7. Datapath of exponentiation unit.

Operation Input b×Input a Output s
pre-11 C × R2 CR
pre-2 1 × R2 P
square P × P P
multi CR × P P
post 1 × P P

Table 2. Pre and post processing for modular
exponentiation.

ADD2 adds all the numbers to form the next s. In the
first cycle (2t+1 in table 5), the multiplexer is set to pass
s stored in regS to the next cell. ADD1 gives out u. The
sum w is stored in regW. In the second cycle (2t+2), regW
is used as an input and ADD2 gives out v. The sum s is
stored in regS. For cell 0, s is also broadcasted to all cells
as input q.

5.5 Exponentiation

The Montgomery multiplication cells are put to use in
exponentiation steps (algorithm 1) and Montgomery pre and
post processing (described in section 4.2). The input and
output for futa in these steps are defined in table 2. Input
b is selected from the register file inside the PE. Input a is
selected from the shift register in figure 3. After comple-
tion of a modular multiplication, the result s is placed in a
suitable address in the register file and the shift register.

As the multiply and exponentiation units operate with
parallel data input, the key and data are input to the chip
and registered in the register file of the PEs and shift register
of figure 3 during initialization. The processor uses 64-bit
ports for key and data input.

Table 4 shows cycle usage equations deduced from sim-

6

Key Clock No. of No. of
size Freq. slices multipliers
512 99.26MHz 8235 32
1024 90.11MHz 14334 62

The XC2V3000 device used has a total of 14336 slices and 96 multipliers

Table 3. Speed and area of 512 and 1024-bit
design reported by Xilinx ISE 5.1.

ulation measurement. For modular multiplication, n+ 1 it-
erations are required, and each iteration consumes 2 cycles
in our pipelined design. There are a few extra cycles for reg-
ister transfer and control, which might be further optimized.
In total, 2(n + 5) cycles are used. For exponentiation, the
average number of modular multiplications is 3h

2 + b − h
where the (b−h) term is from the number of zero ‘padding’
bits.

6 Results

The RSA processor was implemented using VHDL with
automatic Place-and-route (PAR). Simulation was done us-
ing Modelsim 5.5f and the result was verified to be correct
by comparison with the open source OpenSSL library. Syn-
thesis, PAR, bitstream implementation and timing measure-
ment were done using the Xilinx ISE 5.1 package. The tar-
get device was XC2V3000 with speed grade -6. The speed
and area utilization as reported by the Xilinx tools are sum-
marized in Table 3.

Table 4 shows the number of cycles required for differ-
ent operations measured from simulation waveforms. Ta-
ble 5 shows the average RSA processing speed measured
from ModelSim for different sized keys. The measured
time included key/data I/O time but excluded external pre-
computation of key and external normalization of result.
The Chinese Remainder Theorem (CRT) result was deter-
mined by assuming two half-size data are processed in par-
allel using one RSA processor. Finally, Table 6 compares
the speed of our implementation with those reported in the
literature. For a 1024-bit RSA using the CRT, our design
can achieve a decryption time of 0.66 ms (corresponding
to 1.51 Mb/s) which is 4 times faster than the previously
fastest reported result [1].

7 Conclusion

An RSA processor was presented which employs multi-
pliers embedded in an FPGA to achieve high performance.
The multipliers enable a high radix (217) to be used, re-
ducing both latency and the number of cycles for a modular

Operation Generalized1 512b 1024b
Modular Multiplication

MP ×MP 2(n+ 5) 74 134
Modular Exponentiation

Montgomery 2(n+ 5)× 3 222 402
pre/post-processing
Exponentiation 2(n+ 5)× (b−h+ 3h

2
) 59200 209844

Input / Output
Input of 4× (b/64) + 1 37 69
R2,M,A,E
Output of (b/64) + 1 10 18
AE mod M
Measured total clock cycles 59468 210333

1b – number of gross bits, 544 and 1054 for r=17 and h=512, 1024 respec-
tively

Table 4. A breakdown of measured cycle us-
age for different operations.

Key Size Clock RSA Time RSA Rate
512 w/o CRT 100MHz 0.59ms 1.68 Mb/s
1024 w/o CRT 90MHz 2.33ms 429 kb/s
1024 with CRT1 90MHz 0.66ms 1.51 Mb/s

1 This design is too large to fit on XC2V3000 device so an XC2V4000 was
used.

Table 5. Processing speed for one block of
data in the RSA processor.

Year Device / RSA Decryption
Technology (1024 CRT)

[11] 1991-941 ASIC 0.6u 5.5 ms (512b)
[13] 1993 16 XC3090 6.06 ms
[3] 1999 DSP

TMS320C6201
11.7 ms2

[1] 2001 XC40250XV-
09

3.10 ms

[14] 2001 ASIC 0.6u 2.2 ms (512b)3

Ours 2003 XC2V4000-6 0.66 ms
OpenSSL4 Pentium4 1.7G 6.9 ms

1The design is made in 1991 and the chip is fabricated in 1994.
2RSA private key signing, equivalent to decryption speed.
3It only gives the best and worst case decryption rate. We take the average
here.
4Linux kernel-2.4.18-14 i686, OpenSSL version 0.9.6b-29

Table 6. Comparison with other implementa-
tions.

7

exponentiation. Through the use of a semi-systolic architec-
ture, a high operating frequency of 90 MHz was achieved.
This simple yet efficient architecture achieved a through-
put of 1.51 Mb/s for 1024-bit RSA decryption on a Xilinx
Virtex XC2V4000-6 device while maintaining a simple yet
efficient design.

References

[1] T. Blum and C. Paar. High-radix montgomery modular ex-
ponentiation on reconfigurable hardware. IEEE Transaction
on Computers, 50(7):759–764, 2001.

[2] S. R. Dusse and B. S. K. Jr. A cryptographic library for the
motorola dsp56000. Advances in Cryptology, EUROCRYPT
90. Lecture Notes in Computer Science, 473:230–244, 1990.

[3] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara.
Fast implemenation of public-key cryptography on a DSP
TMS320C6201. In In Proceedings of the First Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[4] D. E. Knuth. The Art of Computer Programming, Volume 2,
Seminumerical Algorithms. AddisonWesley, Massachusetts,
1981.

[5] K. Koc. High-speed RSA implementation. Paper, RSA Lab-
oratories, 1994.

[6] P. Kornerup. High-radix modular multiplication for cryp-
tosystems. In E. E. Swartzlander, M. J. Irwin, and J. Jullien,
editors, Proceedings of the 11th IEEE Symposium on Com-
puter Arithmetic, pages 277–283, Windsor, Canada, 1993.
IEEE Computer Society Press, Los Alamitos, CA.

[7] P. Kornerup. A systolic, linear-array multiplier for a class
of right-shift algorithms. IEEE Transactions on Computers,
43(8):892–898, 1994.

[8] S. Y. Kung. VLSI Array Processors. Prentice-Hall Inc., En-
glewood Cliffs, New Jersey, 1988.

[9] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, April
1985.

[10] H. Orup. Simplifying quotient determination in high-radix
modular multiplication. Proc. of the 12th Symposium on
Computer Arithmetic, 1995.

[11] H. Orup and P. Kornerup. A high-radix hardware algorithm
for calculating the exponential me modulo n. In Proceed-
ings of the 10th IEEE Symposium on Computer Arithmetic,
pages 26–28, Windsor, Canada, 1991. IEEE Computer So-
ciety Press, Los Alamitos, CA.

[12] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[13] M. Shand and J. E. Vuillemin. Fast implementations of
RSA cryptography. In E. E. Swartzlander, M. J. Irwin, and
J. Jullien, editors, Proceedings of the 11th IEEE Symposium
on Computer Arithmetic, pages 252–259, Windsor, Canada,
1993. IEEE Computer Society Press, Los Alamitos, CA.

[14] C.-H. Wu, J.-H. Hong, and C.-W. Wu. RSA cryptosystem
design based on the chinese remainder theorem. In Design
Automation Conference, 2001. Proceedings of the ASP-DAC
2001. Asia and South Pacific, pages 391–395. IEEE, 2001.

[15] Xilinx, Inc. Xilinx Vertex-II Platform FPGA Handbook,
2001.

8

