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Abstract. H.264/AVC is the latest video coding standard adopting variable block size motion estimation
(VBS-ME), quarter-pixel accuracy, motion vector prediction and multi-reference frames for motion estimation.
These new features result in much higher computation requirements than previous coding standards. In this
paper we propose a novel most significant bit (MSB) first bit-serial architecture for full-search block matching
VBS-ME, and compare it with systolic implementations. Since the nature of MSB-first processing enables
early termination of the sum of absolute difference (SAD) calculation, the average hardware performance can
be enhanced. Five different designs, one and two dimensional systolic and tree implementations along with bit-
serial, are compared in terms of performance, pixel memory bandwidth, occupied area and power consumption.
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1. Introduction

H.264/AVC [1] is a recent video coding standard
developed by the Joint Video Team (JVC) of ITU-T
VCEG and ISO/IEC MPEG. It is suggested that it can
provide two times better performance than the previous
coding standard MPEG-2, in terms of compression
efficiency and picture quality [2]. Like previous coding
such as H.263 and MPEG-4, it employs block-based
motion estimation to reduce temporal redundancy
between frames. In H.264, block-matching efficiency
is further enhanced by advanced features such as
variable block size motion estimation (VBS-ME),
multi-reference frames and motion vector prediction.
Due to these features, the computational complexity of
H.264/AVC is increased by a factor of four, creating
challenges to achieve real time performance.
Many hardware motion estimation architectures

[2–6] have been proposed in the literature and most
can achieve real time encoding. In many cases a full

search strategy is chosen for reasons of regularity, lack
of data dependencies and optimality. Fast algorithms
are suboptimal but significantly reduce the search
space. These are frequently adopted in software
implementations but data dependencies hinder pipe-
lined hardware designs. We focus on full search (FS)
hardware designs although we also consider the
performance of the three-step search (TSS) [7, 8] with
our architectures.
Many previously reported FS architectures were

implemented using bit-parallel operations since they
have the advantages of better performance, easier
control and simpler design than a bit-serial approach
and most of these were for ASIC rather than FPGA
technology. Of previously reported FPGA implemen-
tations [9–16], only two [15, 16] support VBS-ME,
and both are bit-parallel. A most significant bit
(MSB)-first bit-serial design with early termination
was proposed for QCIF resolution video [13] which
employed a FS within the range −15 to +16. Their



experiments showed that on average, 50% of the
computation, can be saved when an early termination
scheme is employed, the savings depending on the
video scene. A sum of absolute difference (SAD)
engine employing on-line arithmetic was also
reported [14]. This design has improved area-time
product over previous bit-serial architectures, but
only supports one block size and cannot be used for
H.264/AVC or later standards.
In this work we propose a novel MSB-first bit-serial

architecture for VBS-ME that efficiently utilizes the
high ratio of registers to logic present in FPGA devices
which can be employed in H.264/AVC. The architec-
ture makes it possible to eliminate certain unnecessary
computations which are unavoidable in a bit-parallel
implementation. The total execution cycle savings over
a scheme that does not use the early termination scheme
is dependent on the nature of the video but is on average
36.5%. The introduction of H.264 motion vector
prediction mode further improves the saving by 3–5%.
The proposed architecture not only reduces the compu-
tation time via optimizations in the arithmetic and early
termination schemes, but also reduces resource utiliza-
tion through a bit-serial architecture and power by
eliminating unnecessary calculations. The new archi-
tecture results in performance comparable to bit-parallel
implementations but with greatly reduced area.
We further present bit-parallel one and two dimen-

sional systolic implementations. These achieve high
performance and require low memory bandwidth
because of efficient pipelining and local interconnection.
Local accumulation and global accumulation strategies
to sum the absolute difference results are considered.We
compare the bit-serial design with these bit-parallel ones.
The rest of this paper is organized as follows.

Section 2 gives an overview of motion estimation and
the new features present in H.264/AVC. Section 3
presents four parallel systolic implementations which
are used for comparison with our work. In Section 4
the architecture of our serial implementation with
early termination technique is described. Results and
a comparison with other reported work will be given
in Section 5 and conclusions are drawn in Section 6.

2. Motion Estimation Algorithm

In digital video, consecutive picture frames are
combined to form a scene. The redundancy between
frames is usually large due to a relative high frame
rate to scene motion relationship in normal videos.

Motion estimation (ME) techniques have been adop-
ted since the first generation of digital video coding
standards to reduce temporal redundancy between
frames, hence improving compression rates. Block
based matching techniques have been used because
of their simplicity and high efficiency. Although, due
to its limited search range, an optimal solution is not
guaranteed, its hardware-friendly nature makes it the
most common scheme for video coding standards.

2.1. Block-based Motion Estimation

A description of block-based matching techniques
follows. Each picture is divided into a fixed number of
square non-overlapping blocks, called macroblocks
(Mblock). Typically, the block size is 16-pixels by 16-
pixels. Each block in the current frame is compared to
blocks in the reference frame within a predefined search
window and the best match is found (Fig. 1). A SAD
between the current block and reference block, as
described in Fig. 1, is commonly used as the distance
metric since it can be implemented efficiently.
In Fig. 1, cði; jÞ and rði; jÞ represent pixels in the

current and reference block respectively. m; n are the
horizontal and vertical displacement of the current
block within search window. P;Q is the index
indicating which subblock/macroblock SAD is calcu-
lated. In total there are seven types of subblocks/
macroblocks as shown in Fig. 2. The search window
is confined to −16 to +15 in this example and the rest
of this paper. Pixels are positive 8-bit integers, so the
absolute difference is also 8-bit. Summing 16×16 of
them without any rounding leads to a 16-bit sum and
summing only 4×4 of them leads to a 12-bit sum.
Lastly, MVminðP;QÞ is the motion vector with the
minimum SAD value.

2.2. Variable Block Size Motion Estimation

In traditional motion estimation such as used in
MPEG-1, only one motion vector is generated for a
macroblock and the computational complexity is
relatively low. In recent advanced coding standards
such as H.264/AVC, the motion estimation process
has been improved to exploit temporal redundancy as
much as possible. Additional features add significant
demand to hardware requirements, e.g. in H.264/
AVC, VBS-ME increases the number of motion
vectors produced per macroblock, and the quarter-
pixel and multi-reference frame features add addi-
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tional search points to the original searching algo-
rithm. In total, the overall complexity of H.264/AVC
is raised by a factor of 4 compared to the MPEG-2
standard and most of this is due to increased
complexity in the motion estimation process.
In H.264/AVC, each picture (frame) is segmented

into macroblocks. Each macroblock is further divided
into sub-blocks with seven different types of block
sizes (4×4, 4×8, 8×4, 8×8, 8×16, 16×8 and 16×16)
as shown in Fig. 2. Each macroblock has in total 41
types of sub-blocks to cover the whole macroblock.
In VBS-ME, for each type of subblock a motion
vector (MV) is produced so in total 41 MVs are
calculated per macroblock.
The VBS-ME feature is the most challenging

hardware implementation issue added in H.264/
AVC. The multi-reference feature can be imple-
mented at the algorithm level and by data scheduling
techniques. Quarter-pixel accuracy can be performed

after the integer motion estimation process in a post-
processing unit. Thus in this paper we restrict
ourselves to the problem of how to generate 41
MVs within a given search window and current
block.

2.3. Search Algorithms

In the FS algorithm, optimality can be guaranteed by
exhaustively finding the absoluteminimumSADwithin
a search area, typically ranging from −16 to +15. Thus,
in our case, FS involves a total of (15−(−16)+1)×
(15−(−16)+1)=1,024 search positions.
The three-step search (TSS) algorithm, proposed

by Kola [7] and implemented by Lee [8] makes an
assumption that the residue values increase radially
from the absolute minimum point within the search
area. In the first step, TSS compares the nine search
points surrounding the center point with step size p
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Figure 2. Sub-macroblock partitions in H.264/AVC.

SADP,Q(m,n) =  Σ P –1
i =0  Σ  Q–1

j =0 |c(i,j)–r(i+m,j+n)|

–range ≤ m,n < +range,

P,Q ∈ {4,8,16},

u = minm,n{SADP,Q(m,n)}

MVmin(P,Q) = (m,n)

where range is the search range having values  ±16 or  ±32.
Figure 1. Variable block motion estimation.
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equal to or larger than half of the maximum search
range r. Among the nine search points, a minimum is
selected and becomes the center of the next step.
Next, the step size is halved and eight new search

points (excluding the center) are searched and again a
minimum is selected. The step size is halved again
and search continues until the step size is equal to
one. The minimum search point is found at this stage.
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Figure 3. Primitive elements for the systolic and tree architectures.
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The TSS constantly divides the search step size by
two and is therefore a logarithmic search. The total
number of search points is ½1þ 8logðpÞ�. Except for
the first step, the eight search points are calculated in
each iteration and the algorithmic complexity for TSS
is Oð8logðpÞÞ ¼ Oðlogðr=2ÞÞ where p is the initial
step size and typically equals to r=2. This algorithm
has advantages of much lower complexity than FS in
terms of number of candidates to evaluate and
efficient implementations in both software and hard-
ware. Even for software implementations, this algo-
rithm [17] can offer real time encoding. Compared
with FS, techniques such as the three-step search, log-
search [18] and diamond search [19] have reduced
computational complexity but their hardware imple-
mentations involve data dependencies which makes it
difficult to parallelize, and furthermore, they can be
trapped in a local minimum and lead to poor results.
The same datapath can be used to implement both FS
and TSS and the performance of both will be reported
in Section 5.2

3. Bit-parallel Systolic Implementations

In motion estimation, SAD is computed over a four-
dimensional index space i; j;m; n for each macroblock
in a frame, as shown in Fig. 1 . This can be
considered as two 2-D index spaces, the first being
generated by the indexes i; j for calculating
SADP;Qðm; nÞ and the second by m; n. The minimum
SAD is found and a motion vector deduced after
exploring all m; n pairs in the full search. The indexes
i; j can be projected onto a 1D or 2D systolic array
and the number of computation nodes depends on the
block size. Another way is to project i;m onto the
systolic plane and results in an array dependent on
block size and search range. Parallelism can be higher
if the search range is larger than the macroblock size.
A number of ways to map motion estimation
algorithms to systolic arrays have been suggested
[3]. Each computation node or processing element
(PE) is built from subtraction, absolute value,
accumulation and flip flop (FF) primitives as illus-
trated in Fig. 3. Additional ADD and MIN blocks,
also shown in Fig. 3 are used to perform the sum and
find the minimum SAD respectively.
In this section we present four systolic architectures

for implementing SAD. We also estimate the number
of cycles required to process a 16×16 macroblock,
this figure not including overheads introduced by

pipeline flushing, ADD delay and MIN delay. The
actual number of clock cycles for each design is
given in Section 5.
Figure 4 depicts the local accumulation 1D systolic

array (SA-1D). rðx; yÞ and cðx; yÞ are the reference and
current block respectively. It is termed local as it
involves summation within the processing node. This
design requires external memories to store the search
area and current block, resulting in a high memory
bandwidth requirement. Each absolute difference (AD)
PE calculates the absolute difference of two pixels
from the reference block and current block, adds the
result to the already calculated partial sum for the same
search position given by the neighbor PE, and passes
the result to the next PE. At the end of the chain of
PEs, the SAD calculation is finished and the result is
compared with the previous minimum SAD result
within the MIN element. The SA-1D design consists
of 16 PEs, 1 ADD and 1 MIN component. Including
the pipeline speedups, it takes 16 cycles on average to
calculate 1 SAD search position. Since a 16×16
macroblock has 1,024 search positions, the number
of cycles per macroblock is 1024� 16 ¼ 16384. The
ADD and MIN processing is done in parallel with
pixel shifting in all our systolic designs. This
architecture is scalable for search range and block
size. It has small area but the performance is low
compared to 2D-implementations.
The 2D systolic array (SA-2D) is a two dimen-

sional version of the SA-1D architecture. Figure 5
shows its datapath and timing of the data flow. The
reference data is passed horizontally from one AD-
2D element to the next. Data reuse is possible by
making use of delay lines and by moving data from
one PE to the next. This architecture offers the
advantage of reducing memory bandwidth compared
to the SA-1D architecture as the current data is
initially shifted to each PE and will be stored and
reused until the current block motion vector is found.
The SA-2D design consists of 16 � 16 ¼ 256 PEs,
16 ADD and 1 MIN component. The pipelining
introduces 16 cycles of latency to the SAD calcula-
tion. Full search can be pipelined and after the
pipeline is filled, only 1 cycle is required per SAD.
There are 48 columns of reference pixels for a
(−16,15) vertical search range. As a result, the
approximate number of cycles is 48� 32 ¼ 1536
per 16×16 macroblock. This architecture requires
large area but the performance is high because of the
number of parallel computations.
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The global accumulation based architecture, also
referred to as a “tree architecture,” TA-1D, is shown
in Fig. 6 for a 4×4 macroblock. The absolute
difference of a reference and current pixel is
calculated in the PE and the result is accumulated in
an adder-tree external to the PE array. The adder tree is
usually implemented as a non-redundant or carry-save
adder tree with pipeline registers inserted between the
stages. The reference data are fed every cycle to the
PEs whereas the current block data is loaded when
the current block is changed and are kept in registers if
local caches are added. The TA-1D for a 16×16 block
size consists of 16 PEs, each handling an absolute
difference operation, 16 ADDs and 1 MIN. TA-1D
takes approximately 1024� 16 ¼ 16384 cycles.

The two dimensional tree architecture, TA-2D,
depicted in Fig. 7 is the two dimensional extension
of the TA-1D architecture, in which N � N PEs are
used, as illustrated for the 4×4 block size case in
Fig. 7. Search area pixels are fed every cycle to the
PEs whereas the current block data is loaded only
once when the current block is changed. The local
communication between PEs reduces memory band-
width on reference data compared with TA-1D. TA-
2D for a 16×16 block size consists of 256 PEs,
each handling an absolute difference operation, 255
ADDs and 1 MIN. It processes a search point per
cycle (1,024 search points in total), with additional
overhead of 32� 16 cycles to change rows (e.g.
moving from SAD(0,15) to (1,0)), so the approximate
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number of cycles is 1024þ 512 ¼ 1536 to process a
16×16 macroblock. Since it avoids local accumula-
tion and can be fully pipelined, the performance of
this architecture is the best among the four imple-
mentation alternatives.

3.1. VBS-ME Support

There are two methods to support VBS-ME in bit-
parallel architectures. For local accumulation archi-
tectures like SA-1D and SA-2D, one can include
16 partial SAD registers in each node for 4×4
subblocks within a 16×16 macroblock. Each
register stores its corresponding subblock SAD
[20]. The second method is to divide the systolic
array into its smallest possible block size architecture

(sub-systolic array). For example, a 16×16 systolic
array is divided into sixteen 4×4 systolic arrays, each
handling a 4×4 SAD. The sixteen 4×4 SADs are
then combined to form a large SAD via a SAD-reuse
technique using an adder tree [21]. The first method
imposes a large register overhead on each processing
node and can have a large impact on silicon area. The
second may increase the required bandwidth as the
local communications between sub-systolic arrays are
broken.
In tree architectures, the implementation is easier

since there is no partial SAD stored in the systolic
elements. The support of VBS-ME can be done by
adding intermediate registers connected to compari-
son units in different stages of the adder tree.
Similarly, using the SAD-reuse technique, VBS-ME
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Figure 5. 2-D systolic architecture (SA-2D).
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is supported without significantly sacrificing memory
bandwidth and silicon area.
For the SA-1D architecture, VBS-ME is handled by

the conversion of one 16-PE array into four 4-PE arrays.
An adder tree is connected to output of these four arrays
to produce SADs for larger block sizes. In this design,
we have to add 3 ADD and 3 MIN components,
together with registers for intermediate SAD storage
and control logic for 4×4 SAD comparisons. It takes
approximately 1024� 16 ¼ 16384 cycles to process a
16×16 macroblock.
In the SA-2D architecture, VBS-ME is handled

via the conversion of a 16×16-PE array into sixteen

4×4-PE arrays. An adder tree is connected to the
output of these 16 arrays to form SADs of larger
block size. In this design, we need to add 48 ADD,
15 MIN units and an adder tree. Thirty-two rows by
36 columns of pixels are processed for 4×4 blocks so
it takes approximately 36 � 32 ¼ 1152 cycles to
process a 16×16 macroblock.
For VBS-ME in TA-1D, four 4×1 trees are needed

in addition to 3 ADDs and 3 MIN units. Some
registers and control logic are also needed to store
intermediate SAD results. It takes approximately
1024� 16 ¼ 16384 cycles to perform a full search
of a 16×16 macroblock.
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Finally, for TA-2D, VBS-ME support is handled by
attaching MIN elements to each level of the adder
trees. In total 41 MINs are need for 41 motion
vectors. The variable block size support does not
change the number of cycles, so it takes approxi-
mately 1,536 cycles.

4. Bit-serial Implementation

In the bit-parallel motion estimation schemes just
described, the SAD comparison must be made after
the summation of all pixel differences. Thus, the
16-bit SAD (for a 16×16 Mblock) must be pro-
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duced before any comparison can be made. Even if
the current SAD is much larger than the current
minimum SAD, it is not possible to terminate the
SAD operation before the 16-bit result is produced.
This results in wastage of hardware resources and
power consumption. The bit-parallel partial distor-
tion elimination technique [6, 16] has been proposed
for the early termination of the SAD computation.
The disadvantage of this approach is a large

increase in hardware requirements and reduction in
the maximum operating frequency of the design.
Also, the design must operate in a row-serial manner
and maximum parallelism is not achieved. In this
section we describe an MSB-first bit-serial technique
that can address this problem.

4.1. MSB-first Bit-serial Implementation of SAD

MSB-first arithmetic [22], also called on-line arith-
metic, is a bit-serial arithmetic technique in which all
operations start from the most significant bit. It is
particularly efficient for operations such as square
root, division and comparison. This can be used
advantageously in motion estimation as some com-
parisons can be made without examining all the bits
involved, saving computation.
Compared to least significant bit (LSB) first tech-

niques, the MSB-first approach produces results with
higher latency, this delay being called on-line delay. The
number of delay cycles depends on the number of op-
erands. Redundant number systems such as carry-save
or signed-digit representations are normally employed.
We use a radix-2 signed-digit format with digit set

{−1,0,1} in our bit serial design [22]. The absolute
difference computation can be implemented efficient-
ly and all arithmetic operations, such as addition,
subtraction and multiplication are implemented using
this scheme.
Motion estimation involves the calculation of SAD

values between current block and reference block as
shown in Fig. 1. By rewriting this equation in a bit-
serial fashion, we get Eq. (1) which has a triple
summation.

SADP;Qðm; nÞ ¼
XP�1

i¼0

XQ�1

j¼0
j
X7

k¼0
2k

� cði; j; kÞ � rðiþ m; jþ n; kÞð Þj
ð1Þ

The double summation over (P,Q) is mapped to the
signed-digit adder tree and computed spatially while
the innermost summation (0–7) of bit-serial part is
computed iteratively. The remaining problem is how
to generate signed-digit numbers from current and
reference pixel values.
Recall that both current and reference pixels are

positive 8-bit integers. The computation of their
difference in signed-digit representation is done by
making the current pixel positively weighed and the
reference pixel negatively weighed. To compute the
absolute value, a sign-detection on the difference is
first performed. The positive and negative parts of the
signed-digit number are compared MSB-first until
non-equal bits are detected. If the positive bit is 0 and
the negative bit 1, the difference was negative and a
sign change must be performed. Otherwise, the
difference was positive or zero and no change is
made. A sign change is done by swapping the
positive and negative digits in the number from and
including the first non-equal bit. For example, if xþ ¼
10110000 and x� ¼ 10111010, swapping is required,
after which xþ ¼ 10111010 and xþ� ¼ 10110000 .
The absolute value operation is done on-the-fly and
an 8-bit signed-digit result is produced.

4.2. Early Termination Scheme and an Enhanced
Method

There are two related advantages to having a good
initial value for the minimum SAD. The first is that
early termination of comparisons to the current
minimum can be effected more frequently. The
second is that updates to the minimum SAD value
take extra cycles, and initialization can serve to
reduce their occurrence. H.264/AVC uses MV pre-
diction mode (Fig. 8) and initializes the search to the
predicted location. In the typical case, this serves to
reduce the number of SAD updates as the search is
started with a near-minimum value. Table 1 gives our
simulation results showing the number of clock
cycles needed to complete the comparison operation
for different video scenes with different motion
vector initialization strategies, a non early termination
implementation requiring 16 cycles for the three
initialization schemes. The news example is almost-
still motion and zero-assumed (InitialMV=0; 0) motion
and predicted MV initialization performs better than a
standard sequential scheme (Initial MV=�16; 15). In
fast motion scenes, such as flower and Stefan, the
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H.264/AVC predicted MV initialization scheme per-
forms the best and has an average of 5.78 cycles. On
average our early termination scheme with predictive
MV initialization offers a (16−5.79)/16=63.8% sav-
ings in comparison operations. For the entire motion
estimation computation, in total 28 cycles (Fig. 15) are
required in the worst case, and on average our early
termination scheme with predictive MV initialization
offers a 36.5% improvement. Our bit-serial implemen-
tation employs this early termination scheme to
eliminate wasted cycles in bit-parallel computations.
In terms of processor throughput, 100% speed-up

can be achieved when 50% of calculations can be
eliminated. In our case, we have to deal with the
variable block size effect, which affects our early

termination scheme. Since we have to compute 41
parallel comparisons, some can be terminated earlier
than others. There exist dependencies between suc-
cessive types of SADs, e.g. 8×4 depends on 4×4, so
we cannot terminate the 4×4 summation process even
if we know the current 4×4 SAD is larger than the
current minimum. Thus termination only occurs when
all SADs have finished, this being detected by AND-
ing all of the comparator results. Following termina-
tion, the next search is started.

4.3. Datapath

(1) Multi-Operand SD-Adder Tree: The macroblock
size of H264/AVC is 16 by 16 pixels with a 4×4-
block as its smallest sub-block. To find all the
minimum motion vectors of a 16×16-block and
its subblocks, we employ a SAD-reuse strategy
[21]. Since the different macroblock modes are
overlapped in the spatial domain (Fig. 2), the
SAD can be calculated using 4×4 SADs and a
sequence of merging steps applied to obtain other
SADs. For example, an 8×4 and 4×8-SAD can
be formed by combining corresponding values of
4×4-SADs (e.g. 4×4-SADs (Block 1, 2) in Fig. 2
are combined to form an 8×4-SAD (Block 17)).

BLK A BLK B

BLK C
BLK D

(Current
block)M

V
C

MV A

MV B

MV D

Previous Motion vector

Predicted Motion vector

Starting point

BLKD Search window

MVD = Median {MV A,MV B,MV C}

VC

Figure 8. H.264/AVC motion vector prediction.

Table 1. Number of cycles to complete comparison stage for
different scenes using different starting strategy (16 cycles for no
early termination).

Video type Sequential Zero MV Predicted MV

News 6.95 5.39 5.4

Flower 6.64 5.83 5.5

Stefan 7.26 6.54 6.46
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Similarly, an 8×8-SAD can be formed from 4×8-
SADs; 16×8 and 8×16-SADs can be formed
from 8×8-SADs; and finally, a 16×16-SAD is
formed from 16×8-SADs. As a result, the 4×4-
SAD computation becomes our primitive element
and is reused to form other SADs. The top level
adder tree for generating all 41 SADs is shown in
Fig. 9.
The SAD for a 4×4 subblock is produced by

16 pairs of operands summed in signed-digit
format, implying we need to add 32 bit operands
in our adder tree. In our adder tree for SAD, we
make use of two kinds of adders, namely online
carry-save full adders (ol-CSFA) and online
signed-digit adders (ol-SDFA) [23] (Fig. 10).
Specifically, we use a 16-operand signed-digit
adder tree based on two ol-CSFA trees (Fig. 11)

which are combined using an ol-SDFA [24] as
illustrated in Fig. 12. For a 4×4 subblock, this
consists of eight levels with 8 cycles of on-line
delay. The total number of cycles to calculate the
12-bit summation including the on-line delay is
8þ 8 ¼ 16 cycles. The output of a SAD4×4
adder tree is the SAD value of a 4×4-subblock in
signed-digit format. This value is passed to the
SAD Merger unit to calculate other larger SADs.

(2) SAD merger: In our design we need sixteen
SAD4×4 adder trees to compute the SAD of 16
subblocks in parallel. The sixteen SAD4×4
values computed are passed to the SAD merger
as inputs (Fig. 13). The sixteen 4×4-SADs are
fed to a series of ol-SDFAs, i.e. SAD merger, and
combined to form 4×8, 8×4, 8×8, 16×8, 8×16
and 16×16 SADs. The number shown in Fig. 13

SAD4x4
Adder tree

SAD4x4
Adder tree

SAD4x4
Adder tree

SAD4x4
Adder tree

... ... ...

SAD Merger

Sixteen 4x4 adder tree

registers

4x8, 8x4, 8x8, 8x16,
16x8, 16x16 SAD

4x4SAD

Figure 9. Signed-digit adder tree that generates 41 SADs.
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Figure 10. On-line carry save and signed digit adders.
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indicates which block’s SAD is calculated at that
node. The block index is shown in Fig. 2. In
total, the number of ol-SDFAs in SAD merger is
8+8+4+2+2+1=25. Pipelining registers are
added between SAD4×4 adder trees and the SAD
merger to split the combinatorial path and boost the
operating frequency. In our FPGA prototype, one
pipeline register obtains a good balance between
maximum frequency and latency.
Finally, the 41 SAD values are passed to an on-

line comparator. Since the arrival times of different
SAD results are different, the completion times to
determine the minimum SAD vary. Table 2 shows
the delay for each type of SAD.

(3) Signed-digit comparator: In the comparison
stage, we compare the current SAD to the current
minimum SAD for each subblock type in a
MSB-first manner. A signed-digit comparator is
used for this purpose. The architecture of the
comparator suggested in [5] is shown in Fig. 14.
If the number being compared has a difference of
two or more, we can determine which SD
number is bigger. The on-line comparator will
stop when this situation arises, a proof being

given in [5]. The on-line comparator can deter-
mine the result in a minimum of 2 cycles.

4.4. Other Details

In a bit-serial based architecture, we also need to
handle word-to-serial conversion which is unneces-
sary in a bit-parallel design. In addition, we have to
handle extra scheduling brought upon by MSB-first
arithmetic. For example, summation of 16 8-bit
signed-digit numbers results in a 12-bit result, which
involves 8 cycles of on-line delay. Hence we have to
generate eight consecutive cycles of all-zero operands
to feed into the adder tree to compensate the online
delay. Similarly, a 16×16 SAD requires 12 consec-
utive cycles of zeros as shown in Fig. 15. The 16-bit
16×16-SAD result is calculated in 28 cycles for the
worse case where the last 2 cycles in Fig. 15 are
required for the online comparison.
The allocation of picture pixels in memory is

different to that normally used in a bit-parallel case.
256×9-pixels of the search window are stored in 4
block RAMs, each being an 18 kB memory bank in
the FPGA. The RAM address indexes the bit position

CS16 ADDER
TREE

p0+ … p15+

C S C S

CS16 ADDER
TREE

p0- … p15-

OL_SDFA

A+ B+ A- B-

p n

To next OL_SDFA to
calculate other size SAD

SAD4x4_pos SAD4x4_neg

SAD4x4
Adder tree

Figure 12. 16-operand signed-digit adder tree for 4×4 SADs.
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instead of the pixel location. Before feeding the
reference block pixels into the SD adder tree, 1-bit
from 32×32 pixels are loaded from 4 block RAMs to
4-to-1 multiplexers. The multiplexers select the
correct reference block from the search window, and
their values are loaded in a bit-serial fashion, MSB-
first. The drawback of this approach is that we need
preprocessing to fetch search window pixels from the
external bus to block memories, requiring shift

registers before the block RAMs. The current block
is stored similarly but no multiplexers are required.

5. Results

The proposed motion estimation cores are written in
VHDL hardware language, implemented, simulated
and verified on a Xilinx Virtex-II Pro −6 speed grade
device. They are synthesized using Simplicity Pro 8.4.
Place-and-route was done and the power consumption
estimated using XPower provided by the Xilinx ISE
tools. The area utilization, maximum frequency and
estimated power consumption as reported by the
mentioned CAD tools are used for the results presented
in this section. In order to compare different architec-
tures, “performance per slice” and “power consumption
per slice” are also given as a measure of motion
estimation processor efficiency. In the Virtex-II Pro,
each slice includes two 4-input function generators,

ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA ol-SDFA

ol-SDFA ol-SDFA ol-SDFA ol-SDFA
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From sixteen
SAD4x4 Adder
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SAD16x8,
SAD8x16
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All the connection line is a 2-
bit line (Signed-digit number)

SAD Merger

Figure 13. SAD merger.

Table 2. On-line delay (latency) of different SAD types.

SAD type Delay (cycles)

4×4 16

4×8, 8×4 19

8×8 21

8×16, 16×8 23

16×16 25
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carry logic, arithmetic logic gates, wide function multi-
plexers and two storage elements.
We compare both implementations of the architec-

tures supporting fixed block size and VBS-ME. Both
FS and TSS performance is compared. The search

range is fixed to −16 to +15 so that the search area is
48� 48 pixels in size, and a 16×16 macroblock is
used. The bit-serial design uses the enhanced early
termination scheme with predicted MV. To measure
the efficiency of different architectures, we ignore the
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Figure 14. Architecture of on-line comparator.
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area occupied by data storage for current block
pixels, reference block pixels, motion vectors and
minimum SADs since they are required in other parts
of a H.264/AVC coder and normally stored in
external memories. For 2D architectures, as the data
storage for the current block is implemented inside
the systolic array, they are counted in the area
measures. The throughput of architectures is given
by max frequency

cycles per macroblock.

5.1. Fixed Block Size

Table 3 summarizes implementation results obtained for
the systolic array implementations without VBS-ME.
Comparing the 1D architectures, TA-1D has a

similar performance to SA-1D but uses far less
resources. This improves its throughput/slice. In
addition it has higher pixel memory bandwidth

compared to the SA-1D architecture because of
higher operating frequency. The TA-2D architecture
uses the lowest number of clock cycles and has the
highest throughput among all architectures. However,
together with SA-2D, they store the current block
pixels in each of its PEs, making its area larger. This
is a tradeoff as memory bandwidth is greatly reduced.
Among the bit-parallel architectures, the most power
efficient architecture is TA-1D. Generally 1D archi-
tectures use less energy per macroblock since the PEs
are better utilizied.

5.2. Variable Block Size

Table 4 summarizes implementation results obtained for
all VBS-ME implementations. As more computation is
required, the area is increased and throughput decreased
compared with fixed block size implementations.

Table 3. Fixed block size results for systolic array processors (best performance in bold).

Design SA-1D SA-2D TA-1D TA-2D

Max frequency (MHz) 239 232 240 240

Clocks per 16×16 Mblock 16,401 1,600 16,390 1,546

Area (Slices) 836 9,478 350 5,789

Area (Gate) 16,788 193,345 8,281 142,234

Throughput in FS (Mblock/s) 14,572 145,000 14,643 155,239

Max req bandwidth (MB/s) 7,615 3,712 7,680 3,920

Throughput/Slice 17.4 15.3 41.8 26.8

Total power (mW) 1,344 26,755 1,160 19,324

Energy per Mblock (mJ/Mblock) 0.092 0.185 0.079 0.124

Power/Slice (mW/Slice) 1.61 2.82 3.31 3.34

Table 4. Variable block size results (best performance in bold).

Design strategy SA-1D SA-2D TA-1D TA-2D BS

Max frequency (MHz) 230 227 240 239 420

Clocks per 16×16 Mblock 16,393 1,172 16,392 1,546 18,432

Area (slices) 1,457 10,794 925 8513 2,133

Area (gate) 25,158 215,315 20,614 184,329 55,301

FS throughput (Mblock/s) 14,030 193,686 14,641 154,592 22,786

Max req bandwidth (MByte/s) 7,360 14,528 7,680 3,920 13,440

Throughput/slice (Mblock/s/slice) 9.6 17.9 15.8 18.1 10.7

Total power (mW) 1,794 29,875 2,834 32,337 13,919

Energy per Mblock (mJ/Mblock) 0.128 0.154 0.194 0.209 0.611

Power/slice (mW/slice) 1.23 2.77 3.06 3.79 6.5

BS refers to the FS bit-serial implementation with early termination and predictive MV initialization.
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The lowest area is achieved by the TA-1D design
and the highest throughput is achieved by SA-2D.
The best throughput per gate is achieved by TA-2D.
These designs are able to achieve high performance
and efficiently utilize hardware resources. The bit
serial design sits between the 1D and 2D architectures

and balances throughput, bandwidth and area. Its
performance is helped by its much higher clock
frequency compared to the other bit-parallel imple-
mentations. The lowest power and energy consump-
tion is achieved by the SA-1D design. Bit-parallel
designs are much more power efficient than bit-serial
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due to their lower operating frequency and less
storage elements.
A throughput comparison of different architectures

at different resolutions is shown in Fig. 16. The 2D
designs clearly have the highest performance among
all alternatives due to their pipelined, parallel archi-
tecture. For VBS-ME, SA-2D has the highest
throughput. Two dimensional architectures are the
most suitable for high throughput applications such as
full HD video encoding, cinema quality video
creation, etc. Low throughput applications, e.g. video
conferencing, are best handled with 1D systolic and
bit serial architectures.
In terms of area (Table 4), 2D architectures occupy

the most resources, 1D the least and the bit-serial
implementation are in-between. Area is strongly
related to its performance and throughput/slice is a
better measure of an architecture’s efficiency. As area
directly affects the cost of the hardware, a suitable
architecture should be selected to minimize produc-
tion cost. In modern technology, implementation of
2D architectures on FPGA devices is still expensive
as high-end FPGA devices must be used. 1D and bit-
serial architectures may be more suitable for cost-
constrained applications.
The required memory bandwidth for different

architectures at their maximum operating frequency
is shown in Table 4. The SA-2D has the largest
bandwidth requirement as 16 PEs must be supplied

with 8 B/cycle. The bit-serial design also has high
bandwidth due to its higher operating frequency. The
SA-1D, TA-1D and TA-2D designs have reduced
memory bandwidth requirements, TA-2D being the
lowest by far. Memory bandwidth significantly af-
fects the power consumption and in battery-powered
applications, high bandwidth architectures should be
avoided. On the other hand, memory is slow com-
pared to logic and smaller bandwidth requirements
often allow us to process data at a higher throughput.
Power consumption is due to four main factors.

The area occupied, operating frequency, bandwidth
requirement, and algorithm involved. Bandwidth can
be reduced by introducing more local memories, but
the area is increased. The power and energy con-
sumption and power per slice are shown in Table 4,
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Table 5. Summary of throughput for full search and three-step
search.

Architecture

Worst case
delay
(cycles)

Throughput
(FS)
(SAD/cycle)

Throughput
(TSS)
(SAD/cycle)

SA-1D 33 16 18

SA-2D 33 1 10.4

TA-1D 22 16 16.6

TA-2D 26 1 9.8

BS 28 (18 with ET) 18 20

ET stands for early termination.
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the SA-1D being superior in all these metrics. The
high power consumption of the bit-serial design is
due to the high frequency required by bit-serial
architectures. Employing fast algorithms other than
full search can greatly reduce its power consumption,
albeit with some loss of quality. This may be
acceptable in many low-end applications.
Figure 17 shows the throughput of different

architectures for both full and three-step searches,
assuming HDTV resolution (1080p) and Fig. 18
shows the throughput per slice. The bit-serial design
performs the best for TSS as the data dependencies in
bit-parallel designs lead to data hazards, causing the
pipeline to stall. This overhead does not exist in our
bit-serial design. A high level summary of the
performance for full and TSS is given in Table 5. In
1D or 2D systolic arrays, 16 and 32 cycles are wasted
respectively when a data hazard occurs. As an example,
a three-step search in a 2D systolic array requires about
260–280 cycles to calculate SADs for 27 search points
and the two redundant search points in TSS cannot be
eliminated. The number of cycles per search point is
increased from 1 to around 10 cycles/search point. In
our bit-serial architecture, due to lack of systolic data
dependencies, wasted cycles due to pipeline flushes are
minimized and the efficiency for TSS and other fast

search algorithms can be much higher. It is able to
process three-step search in around 450 cycles com-
pared to 18,432 for FS, and the number of cycles per
search point is almost kept constant.

5.3. Comparison to Previous Work

In this subsection we compare our bit-serial and SA-2D
implementations to previously reported FPGA and
ASIC VBS-ME designs. The differences in FPGA
architectures, CAD tools and VLSI technology used
make direct comparisons between the different imple-
mentations difficult. For example, the same design
would have higher throughput if a newer device is
used, and it is difficult to separate improvements due to
technology from improvements due to the design.
In Table 6, we compare our work with previously

reported VBS-ME implementations. The bit-serial
design operates at the highest frequency among all
architectures due to its bit-serial design and the
130 nm technology of the FPGA. Furthermore, its
throughput per slice is comparable to the best
previously reported bit-parallel design. The SA-2D
design achieves the lowest average number of cycles
per SAD and best overall throughput and throughput
per slice of all implementations studied.

Table 6. Results and comparison of VBS-ME processors on FPGA devices.

Device Altera EP20K200E [15] Xilinx XC2V6000 [16]
Xilinx XC2VP100-6
(this work)

Xilinx XC2VP100-6
(this work)

Design strategy Bit-parallel Bit-parallel Bit-serial SA-2D

Max frequency(MHz) 120 51.49 420 227

Area (slices) 3,690 9,788 2,133 10,794

Throughput (Mblock/s) 29,296 3,036 23,068 193,686

Throughput/Slice 7.9 0.31 10.8 17.9

Average cycles/SAD 40 16.4 27 1.14

One slice is considered to be two logic cells in a Xilinx part and 2 logic elements for Altera parts.

Table 7. Results and comparison of VBS-ME processors on ASIC devices.

Design strategy Bit-parallel [25] Bit-parallel [26] Bit-parallel [27] Bit-parallel [28]
Bit-serial
(this work)

SA-2D
(this work)

Num. PEs 256 256 16 16 N/A 256

Max frequency (MHz) 200 100 100 294 420 227

Area (Gate) 597k 154k 108k 61k 55k 215k

Throughput (Mblock/s) 195,313 97,560 5,560 17,820 23,068 193,686

Performance/gate 0.327 0.634 0.051 0.292 0.417 0.90
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Since we can obtain an equivalent gate count from
Xilinx ISE tools, we are also able to compare our
architectures to ASIC implementations. The gate
count collected from the Xilinx ISE tool is likely to
overestimated. Tables 6 and 7 show the results for
FPGAs and ASICs respectively. A comparison of our
designs with previously reported ASICs is given in
Table 7. The number of PEs indicates the architec-
ture, typically 16-PE architectures being 1D systolic
and 256-PE architectures being 2D. In typical 1D
implementations, performance per slice is lowest
while fully parallel 2D architectures obtain the high-
est scores. Our bit-serial design lies in-between.

6. Conclusion

We have presented FPGA-based systolic and bit-serial
implementations of VBS-ME processors for H.264/
AVC. For the bit-serial implementations, on-line
arithmetic, careful initialization and early termination
are combined to achieve small area with high perfor-
mance. Of the VBS-ME designs tested, the bit-serial
design achieves highest throughput for fast search
algorithms such as the three-step search. For full
search, the two dimensional architectures were superior
in terms of performance to the one dimension ones and
best absolute throughput was achieved by the SA-2D
design but requiring very high memory bandwidth.
Best performance per slice was achieved by the 2D
designs and for power consumption per slice, best
results were achieved with the SA-1D design. Our
motion estimation processors offer different tradeoffs
among performance, required memory bandwidth, area
and power. Depending on the design criteria, the most
suitable can be selected according to the results
presented in this work.
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