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Abstract—Customisable data formats provide an opportu-
nity for exploring trade-offs in accuracy and performance
of reconfigurable systems. This paper introduces a novel
methodology for mixed-precision comparison, which improves
comparison performance by using reduced-precision data-
paths while maintaining accuracy by using high-precision data-
paths. Our methodology adopts reduced-precision data-paths
for preliminary comparison, and high-precision data-paths
when the accuracy for preliminary comparison is insufficient.
We develop an analytical model for performance estimation of
the proposed mixed-precision methodology. Optimisation based
on integer linear programming is employed for determining the
optimal precision and resource allocation for each of the data-
paths. The effectiveness of our approach is evaluated using a
common collision detection problem. Performance gains of 4
to 7.3 times are obtained over baseline fixed-precision designs
for the same FPGAs. With the help of the proposed mixed-
precision methodology, our FPGA designs are 15.4 to 16.7 times
faster than software running on multi-core CPUs with the same
technology.

Keywords-mixed precision, reconfigurable system.

I. INTRODUCTION

FPGAs have made rapid advances. Exciting developments
include devices comprising nearly a million LUTs, thou-
sands of high performance embedded multipliers, on-chip
memory blocks, and I/O transceivers which provide band-
width exceeding one Tera bits per second. These capable and
abundant resources, combined with the flexibility provided
by the reconfigurable logic blocks and routing network,
can realise customised data-paths which significantly out-
perform high-end CPUs. In fact it has been shown that
the peak floating-point performance of FPGAs has already
surpassed that of CPUs [1].

This paper introduces a novel methodology for utilising
reduced-precision data formats in numerical function com-
parisons. A numerical function comparison is defined as the
difference between two functions f(x) and g(y), where f
and g are two numerical functions and x and y are their input
vectors. Such comparisons exist in many high performance
applications. In clustering algorithms such as K-means clus-
tering and EM clustering [2], [3], function comparisons are
used to assign data points to their nearest cluster. In collision
detection algorithms, function comparisons are performed to
check the overlappings between objects [4]. In numerical op-
timisation algorithms such as Nelder-Mead simplex method
and simulated annealing method, function comparisons are

necessary to guide the searches [5], [6]. Any methodology
enhancing the performance of FPGAs’ function comparison
will significantly improve these applications.

The flexibility of FPGAs provides trade-offs between
performance and accuracy in the implementation of function
comparison data-paths. Reduced-precision data-paths usu-
ally consume less logic resource, require lower I/O band-
width and have higher clock frequencies at expense of lower
comparison accuracy. For a given area, more parallelism
may be achieved by using reduced-precision data-paths
instead of high-precision ones. When accurate comparisons
are required, high-precision data-paths with lower perfor-
mance are unavoidable. Our mixed-precision methodology
has the advantages of reduced-precision data-paths without
compromising the comparison accuracy. Reduced-precision
data formats are used for preliminary comparisons, and high-
precision data-paths are used to re-compute the comparison
when the accuracy of preliminary comparison is found to be
insufficient.

The major challenges of applying a mixed-precision
methodology are to decide which precision to be used in
the reduced-precision data-paths, and to allocate resources
among the reduced-precision and reference-precision data-
paths. We refer these problems as the optimal precision
and optimal resource allocation problems respectively. Using
reduced-precision will increase the degree of parallelism as
well as improve their performance. However, it will also
decrease their accuracies and a higher percentage of com-
parisons will require corresponding re-computations using
the reference-precision data-paths. By adjusting the preci-
sion, we can redistribute workloads between the reduced-
precision and reference-precision data-paths. In a reconfig-
urable system, we can also adjust the degree of parallelism of
the reduced-precision and reference-precision data-paths to
match their workloads. To this end, we develop an analytical
model that is used to solve these problems.

The major contributions of this work are:

• A novel mixed-precision methodology for numerical
function comparison based on analysis of error infor-
mation in reduced-precision data format (Section III).

• An analytical model of mixed-precision function com-
parison systems for determining the optimal precision
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and resource allocation for reduced-precision and high-
precision data-paths (Section IV).

• A demonstration of the effectiveness of the proposed
methodology by mapping a common collision detection
algorithm to reconfigurable systems. A performance
gain of 4 to 7.3 times is obtained over the baseline fixed
precision designs on the same FPGAs (Section V).

II. RELATED WORK

Previous work can be classified into two categories. They
are bit-width optimisation techniques and mixed-precision
linear algebra methods.

Bit-width optimisation techniques aim to improve perfor-
mance by using minimum precision in a data-path given
a required output accuarcy. These techniques are applicable
to any application involving numerical computation. A com-
mon approach is to develop an accuracy model which relates
output accuracy with the precisions of the data formats being
used in the data-path. The performance and area of data-
paths with different precisions both have to be modelled.
By combining the two models, one can search for the
design with a sufficient accuracy and a minimum area-delay
product. Common accuracy modelling approaches include
simulation approach [7], interval arithmetic [8], backward
propagation analysis [9], affine arithmetic [10], [11], [12],
[13], SAT-Modulo theory [14] and the polynomial algebraic
approach [15]. The search for minimum area-delay product
usually involves a non-convex integer programming problem
with number of variables proportional to the complexity of
the data-path, an exhaustive search is usually infeasible and
thus the result is not guaranteed to be optimal. Although
the polynomial algebraic approach reduced the problem to
a convex integer programming problem [15]. However, an
exhaustive search is still infeasible because the variables
can only take integer values. Thus, bit-width optimisation
of data-paths remains an open on-going research problem.

The major issue of bit-width optimisation techniques is
the uncorrectability of the approach. A reduction of precision
in any stage within a data-path will result in a loses in
output accuracy. The introduced error is not correctable
by performing additional computations. Thus high-precision
data formats are required for accurate outputs. The benefit
of employing bit-width optimisation is usually a 20 to 40 %
reduction in area-delay product [9], [10], [11], [12], [15].

Mixed-precision linear algebra methods use reduced-
precision data formats for computations. They are only
applicable to iterative algorithms which can correct previous
errors, such as iterative refinement [16], [17], iterative Jacobi
solver [18] and conjugate gradient method (CG) [19]. Some
work is reported in an attempt to utilise reduced-precision
computations as much as possible, and the high-precision
computations are only adopted to correct errors [16]. In [17],
[19], high-precision computations are completely avoided
and accurate results are achieved by running more iterations.

Mixed precision linear algebra methods can usually achieve
good performance due aggressive reduction in precision. For
example Lopes et al. observed speedup of 14 to 36 times
compared with a high-end CPU using a reduced-precision
FPGA CG solver [19]. However, these methods are limited
to linear iterative algorithms and are not applicable to other
applications.

Our mixed precision methodology has similar advantages
to both categories mentioned above. First, it is a generalised
method and is applicable to any numerical function compar-
ison. Second, re-computations are performed to correct the
error introduced in previous reduced-precision computations.
Thus we can use reduced-precision data formats without
compromising the comparison accuracy.

III. MIXED-PRECISION METHODOLOGY

In this section, we first define the accuracy of a numerical
function comparison to illustrate the principle of our novel
mixed precision methodology.

Referring to the distinction between precision and ac-
curacy in [20], precision is the degree of correctness of
each atomic computation and accuracy is the degree of
correctness of the final computation result. In the context of
numerical function comparison, precision is the correctness
of each atomic computation in the data-path (i.e. cores) and
comparison accuracy is the correctness of the comparison
result.

A function comparison can be written as a subtraction
of two functions (i.e. D = f(x) − g(y)). Only the sign
of the difference D is of interest. When finite precison
arithmetic is used for the computation of D, we might
have a flipped sign compared with the true value of D. We
use the following definitions in comparing the accuracy of
two different function comparaison systems with different
implementations.

Definition 1. A correct comparison result is defined as the
result computed without finite precision error.

Definition 2. Let XA and XB be the sets of inputs for
which function comparison systems A and B give correct
comparison results respectively. System A is (at least) as
accurate as system B if XB ⊂ XA.

Using the definitions, we can relate the comparison accu-
racy of a mixed precision system to the accuracy of another
system with a well-defined precision, such as a system with
IEEE double precision data format. 1

A mixed precision comparison proceeds in the following
steps:

1) Evaluate the two functions and compute their dif-
ference using a reduced-precision data format. (i.e.
compute DL = fL(x)− gL(y))

1Throughout the paper, we use the subscripts L, H and T to denote
quantities computed with the reduced precision arithmetic, the reference-
precision arithmetic and the true value of the quantities respectively.
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Figure 1. Three difference decision regions of reduced precision compar-
ison.

2) Estimate the maximum and minimum values of the
true value of the difference, i.e. min(DT ) and
max(DT ), using DL and the pre-estimated error
bounds Ef and Eg . The minimum and maximum are
computed as follows, where Ef (x, L) is the absolute
error of fL.

min(DT ) = DL − Ef (x, L)− Eg(y, L) (1)

max(DT ) = DL + Ef (x, L) + Eg(y, L) (2)

The absolute error Ef (x, L) is approximated based on
the relative error REf :

Ef = fT ×REf (L) ≈ fL ×REf (L) (3)

The relative error of a function is defined below, where
fT (x) is the true value of f and x is any valid input
for f . Ways for acquiring these relative errors will be
discussed in next section.

REf = max(|fL(x)− fT (x)

fT (x)
|) (4)

3) Return a comparison result or re-compute the
comparison in reference-precision according to the
minimum and maximum values. There are 3 cases:
case I: min(DT ) > 0, return DT > 0
case II: max(DT ) < 0, return DT < 0
case III: otherwise re-evaluate the two functions and
compute their difference with the reference precision
H then return sign of DH .

In case I and case II, the difference between functions
f and g is large enough to distinguish the sign of D even
in the presence of errors introduced by reduced-precision
computations. The reduced-precision comparison gives ex-
actly the same comparison result as the reference precision
data-paths in these cases. In case III, the difference is small
compared with the uncertainty introduced. Hence, we re-
evaluate the two functions and re-compute their difference
in the reference-precision H to ensure we achieve the same
comparison result as H . Figure 1 shows the three decision
regions of a mixed precision comparison. The mixed preci-
sion methodology gives exactly the same comparison as a
comparison system with a reference precision H in all the
three cases, and thus has an equivalent comparison accuracy
as precision H according to our definitions.

reduced precision
datapath

reference 
precision datapath

reference 
precision datapath

pL copies

pH copiesx,y

x,y require
re-computation

reduced precision
datapath

x,y

reduced precision
datapath

x,y

cross-
bar

comparison result comparison resultREf, REg

Figure 2. System architecture of the mixed precision comparison.

IV. ANALYTICAL MODEL

In this section, we derive an analytical model for the per-
formance of the mixed precision comparison systems being
given a choice of reduced-precision. We define the input and
output parameters of the model and show analytically how
they are connected. We also show how the optimal precision
and optimal resource allocation can be found by solving a
set of integer linear programming problems.

Figure 2 shows the system architecture of the mixed
precision comparison system for our model. All data (in-
cluding the values of x and y) are first fed into one of the
reduced-precision data-paths. A comparison result is then
returned immediately if the data does not require a re-
computation. If re-computation is required, the input data
are forwarded to one of the reference-precision data-paths
through the communication infrastructure. This data-path
includes FIFOs to maintain pipelining. A cross-bar keeps the
workloads of the reference-precision data-paths balanced,
by multiplexing each reference-precision data-path input
to multiple reduced-precision data-path outputs. Although
the reduced-precision data-paths adopt lower precision than
the reference-precision data-paths, their input data have to
be in reference-precision format and outputs are buffered.
Data in reference-precision format are thus available if re-
computation is required.

Regarding the mixed-precision comparison system in our
model, the following assumptions are made:

• The communication overhead, in terms of time,
between the reduced-precision data-paths and the
reference-precision data-paths is negligible. This is
mostly valid when both data-paths are located in the
same FPGA.

• Each data-path adopts a homogeneous data format; all
operators within a data-path have the same precision.

• The rate of re-computation is constant. This is valid
for datasets from similar sources. When the rate of re-
computation changes, either we restart the architectural
exploration or we set rate of re-computation to the worst
case (highest) in our initial exploration in order to cover
all possible cases.
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Table I
INPUT AND OUTPUT PARAMETERS OF OUR MODEL

Input parameter Definition

H
the precision of reference-precision data-
paths

L
the precision of reduced-precision data-
paths

pH , pL
number of reduced-precision and high-
precision data-paths

Clut(H), Cmul(H) area of reference-precision data-paths
Clut(L), Cmul(L) area of reduced-precision data-paths

Clut(com) area of the communication infrastructure
RS slack ratio

T (L), T (H)
throughput of reduced-precision and
reference-precision data-path

RR

rate of re-computation, the percentage of
reduced-precision comparison that require
re-computations

Alut, Amul total amount of resource in the FPGA

Output parameter Definition
T (equ) equivalent comparison throughput

Table II
DEPENDENCE OF DIFFERENT INPUT PARAMETERS.

parameter Dependence
device function H L data

Clut(H), Cmul(H) ✔ ✔ ✔
Clut(L), Cmul(L) ✔ ✔ ✔

Clut(com) ✔ ✔ ✔ ✔
RS ✔

T (H) ✔ ✔ ✔
T (L) ✔ ✔ ✔
RR ✔ ✔ ✔ ✔

Alut, Amul ✔

Table I shows the input and output parameters of our
model. We define slack ratio RS as the percentage of an
FPGA’s resources that should remain un-used to ensure
that the maximum clock frequencies of the data-paths are
not degraded due to routing or placement congestion. The
value of H , L, pH and pL can be varied, while other
input parameters are constants depending on different as-
pects of the system. The dependence of those constants is
shown in Table II. The aggregated throughput of reduced-
precision and reference-precision comparison relies on both
the throughput of a single comparison data-path T (L) and
T (H), and the parallelism of each kind of data-path (pL and
pH ). The aggregated throughput TA can be expressed as:

TA(L) = pL × T (L) (5)

TA(H) = pH × T (H) (6)

The number of comparison (NRR) that requires re-
computation with reference-precision data-path per second
is equal to the product of rate of re-computation and the
aggregated throughput of reduced-precision data-paths.

NRR = TA(L)×RR (7)

Data-path ratio constraint. When NRR is less than
the aggregated throughput of reference-precision data-paths
TA(H), the work load of the reference-precision data-paths
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Figure 3. An example of an equivalent comparison throughput verse
pL/pH for a particualr choice of L and H .

is less than their aggregated throughput. Thus the reference-
precision data-paths are sometimes stalled to wait for data
from the reduced-precision data-paths. Likewise, when NRR

is larger than TA(H), the reduced-precision data-paths are
stalled sometimes to wait for the reference-precision data-
paths. The equivalent comparison throughput (i.e. number of
new inputs that the reduced-precision data-paths can accept
per second) is:

T (equ) = max(TA(L), TA(H)/RR) (8)

The best performance occurs while both sets of data-path
are working all the time (i.e. NRR = TA(H)). It implies
that there is an optimal ratio for the parallelism of the
reduced-precision to reference-precision data-path (pL / pH)
given H and L. Figure 3 shows an example of an equiv-
alent throughput curve with different reduced-precision to
reference-precision data-paths ratios. Equation 9 shows that
the optimal ratio depends on the ratio of the throughputs of
the data-paths and the rate of re-computation only. The equa-
tion also verifies that more reference-precision data-paths are
needed if more comparisons require re-computation.

NRR = TA(L)×RR = TA(H)⇒ pL
pH

=
T (H)

T (L)RR
(9)

The optimal ratio stated in equation 9 may not be feasi-
ble because pL and pH can only take integer values. In
such cases, either the reduced-precision data-paths or the
reference-precision data-paths are stalled sometimes. We
always pick pL and pH such that the reference-precision
data-paths are stalled rather than the reduced-precision ones
to ensure no overflow, which implies the following constraint
on the number of data-paths,

pL
pH
≤ T (H)

T (L)RR
(10)

Resource constraint. As FPGA resources are finite, we
include a constraint to ensure that the data-paths can fit in an
FPGA. Equation 11 shows the general resource constraint in
our model which should be applied to every resource in the
data-paths (i.e. lut, mul).

pL × C(L) + pH × C(H) + C(com) ≤ A× (1 −RS) (11)
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Algorithm 1 Optimisation process for optimal reduced-
precision and resource allocation

1: Tmax ← 0
2: for L = Lmin to Lmax do
3: locate optimal pL and pH
4: T (equ)← pL × T (L)
5: if T (equ) > Tmax then
6: Tmax ← T (equ)
7: end if
8: end for

Equivalent comparison throughput. The equivalent com-
parison throughput T (equ) is the number of new inputs
that the system can accept per second. If the constraint in
equation 10 is satisified, the allowed number of new inputs
per second is only restricted by the aggregated throughput
of the reduced-precision data-path.

T (equ) = pL × T (L) (12)

There are four main parameters in our model. H is the
reference-precision and is determined by the comparison
accuracy requirement. pH and pL determine the FPGA
resource allocation between the two kinds of data-path. L is
the precision adopted by the reduced-precision data-paths.
Algorithm 1 is used to obtain the optimal precision L and
the optimal resource allocation.
Lmin and Lmax are the minimum and maximum pre-

cision for the reduced-precision data-paths in the design
space. In step 3 of Algorithm 1, we apply an integer
linear programming (ILP) using equation 12 as the objective
function and equation 10 and 11 as constraints. The optimal
reduced-precision is simply the one that gives the highest
comparison throughput among all the possible precisions.
In the following section, we show how Algorithm 1 is used
in optimising precision and resource allocation for a given
application.

V. COLLISION DETECTION ALGORITHM

We consider a collision detection algorithm of pairwise
bounding sphere in 3-dimensional space as our example. It
is commonly used in the broad-phase of collision detection
algorithm being used in gaming and Physics simulations [4].
This section shows how it is mapped to a reconfigurable
system using the proposed mixed-precision methodology.

The input to the collision detection problem is a set
of spheres in 3-dimensional space with different centres
and radii. Each sphere is represented by a quadruple (cx,
cy , cz , r) and the output of the algorithm is the set of
overlapping sphere pairs. As shown in Algorithm 2, there
exist (∼ N2/2) function comparisons in a pairwise collision
detection algorithm for N spheres.
Defining the functions for comparison. The first step
in mapping the collision detection algorithm is to iden-
tify the two functions for comparison. We choose f =

Algorithm 2 3D spherical volume based collision detection
algorithm
Require: ci, coordinates of the centers of the spheres
ri, radius of the spheres
for i = 1 to N − 1 do

for j = i+1 to N do
D = ||ci − cj|| − (ri + rj)
if D < 0 then

sphere i collides with sphere j
end if

end for
end for
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Figure 4. Simulated maximum relative error of function f and g for
floating-point data formats with different number of mantissa bit.

∑
k=x,y,z(cki− ckj)

2 and g = (ri+ rj)
2. It is interesting to

note that operations can be transferred from one function
to another without altering the original comparison. For
instance we can remove the square operation in g and insert
a square root operation in f instead.
Error profiling of the functions. The second step of the
mapping process is to determine the relative error of the two
functions in different precisions. Any accuracy modelling
approaches mentioned in section II can be used for this
purpose. A Monte-Carlo based method is employed for
simplicity. We randomly generate a million test vectors and
estimate their relative errors in different precision using
equation 4. We use the MPFR multiple precision floating-
point library to simulate the function values for different
numbers of mantissa bits [21]. An L mantissa-bit floating-
point representation is used to compute the value of fL while
a 500 mantissa-bit floating-point format is used to compute
the true value (fT ) and other operations in equation 4.
The number of exponent-bit is adjusted automatically by
the library to prevent overflow in both representations. The
IEEE round to the nearest rounding mode is chosen in the
simulation to match the rounding mode of our hardware
implementation based on Xilinx LogicCore library [22]. Fig-
ure 4 shows the simulated relative errors of the two functions
in the collision detection algorithm. When the precision of
the data-path increases, the relative error decreases.
Profiling the rate of re-computation. The third step of the
mapping processing is to profile the rate of re-computation
using the relative errors (REf and REg) obtained. We
generate random collision benchmarks with different char-
acteristics using the common method mentioned in [23]; the
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details of the benchmark generation is explained in the next
section. As shown in figure 5, the rate of re-computation
drops quickly with increasing precision of the data-paths and
become undetectable when there are more than 31 mantissa
bits. We also find that the rate of re-computation is dataset
dependent and it changes according to the characteristic of
the dataset. Thus the benchmark for profiling RR should
follow the characteristic of the dataset of actual operations.
When prior knowledge about the dataset is not available or
it changes constantly, we can either use a worst-case rate
of re-computation (i.e. the maximum among all datasets) or
use a run-time re-computation rate profiling method. The
first method will lead to a non-optimal precision allocation,
and the second method requires run-time reconfiguration.
Extracting the characteristics of the data-paths and
the communication infrastructure. The next step of the
mapping process is to extract the throughput and area of the
data-paths and communication infrastructure. Figure 6 shows
the block diagrams of the reference-precision and reduced-
precision data-paths. As shown in the figure, the reduced-
precision data-path requires 2 additional multipliers and 3
additional adders in order to compute the minimum and
maximum values of the difference. The additional operators
are the overhead of using reduced-precision data-paths and
the overhead remains the same for any function f and g.
We select two FPGAs from Xilinx to implement the mixed-
precision comparison:

1) The Virtex-5 VLX 330T which is based on 65nm
technology. The number of embedded multipliers on
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this FPGA is relatively limited and they are not used
in our designs.

2) The Virtex-6 VLX760 which is based on 40nm tech-
nology. Both LUTs and embedded multipliers are used
in the designs.

We use the Xilinx LogicCore floating-point library to im-
plement our data-paths. For the reference-precision data-
path, an s53e8 (i.e. 53 mantissa bits and 8 exponent bits)
data format is used which mimic the number of mantissa
bits of an IEEE double precision format. For the reduced-
precision data-paths, we use L-bit mantissa floating-point
format with 8-bit exponent, where L range from 4 to 52.
Figure 7 and figure 8 respectively show the cost and through-
put of the reduced-precision data-paths after the place and
route process. As shown in the figures, low-precision data-
paths consume significantly less resources and have higher
throughputs compared with the high-precision ones. We also
place and route the reference-precision data-paths and the
corresponding results are reported in Table III. On both
FPGAs, the reference-precision data-paths with an s53e8
data format consume fewer LUTs and embedded multipliers
than any reduced-precision data-path with more than 41
mantissa bits. This is because of the additional operators
in the reduced-precision data-paths for the computation
of maximum and minimum. We use “crossover precision”
to denote the precision where reduced-precision data-paths
become more expensive than the reference-precision data-
path. In the process of locating optimal precision using
Algorithm 1, we set Lmax to be the crossover precision
since it will be more efficient to use the reference-precision
data-path directly provided that L is larger than that value.
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Table III
AREA AND THROUGHPUT OF THE REFERENCE-PRECISION DATA-PATHS.

LUT-reg pairs multipliers throughputs (MHz)

Virtex 5 17198 0 223
Virtex 6 7350 40 285

We design a crossbar with a variable number of I/O ports
for the distribution of re-computations among the reference-
precision data-paths. To simplify our calculation, we use the
area of the design with a maximum number of I/O ports
as the communication infrastructure overhead (Clut(com)).
The overhead (i.e. FIFOs and the crossbar) is 11440 LUTs
in the Virtex-6 design and 4790 LUTs in the Virtex-5
design. The Virtex-6 one consumes more area because it
is connected to more data-paths.
Optimal precision and optimal resource allocation. The
final step of the mapping process is to locate the optimal
precision for reduced-precision data-paths and the optimal
resource allocation using Algorithm 1. Figure 9 shows the
maximum performance and the optimal number of reduced
and reference-precision datapaths, for different precisions L
of an example benchmark. Each data point on the curve
represents a mixed-precision system with optimal number of
reduced-precision and reference-precision data-path. How-
ever, only the data point with highest performance has the
optimal precision L. On the left of the optimal precision,
the re-computation rates are so high that too many com-
parisons require re-computations by the reference-precision
data-paths. Beyond the optimal precision to its right, re-
computation rates are low but the area cost of reduced-
precision data-path is too high.

VI. PERFORMANCE EVALUATION

We generate random collision benchmarks with different
characteristics using a common method described in [23].
8192 spheres are defined with their centres randomly located
inside a 3D cube with length equal to 100 units. Their radii
are randomly assigned as 0 to r units. We design 20 bench-
marks with values of r between 5 to 100 units. Different
values of r give datasets with different re-computation rate
characteristics. We consider two scenarios for the application
of our mixed-precision methodology to the benchmarks. In
scenario I we assume that the rate of re-computation of each
benchmark is known a priori and a mixed-precision system
with optimal precision and resource allocation is used. In
scenario II , we randomly choose a benchmark but the re-
computation rate is unknown to the mixed-precision system.
The worst-case rate of re-computation (i.e. The highest one
among all datasets) is used in this scenario. As a result,
optimal performance is not guaranteed.

We compare the performance of the collision detection
algorithm for different systems. The following alternative
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Figure 9. Equivalent comparison throughput T (equ) and the correspond-
ing optimal parallelism (pL, pH ) for reduced-precision and reference-
precision data-paths for different choice of precision of an example bench-
mark.

implementations are chosen for the comparison to our mixed
precision methodology on FPGAs. IEEE double precision is
used in the software implementations and s53e8 data format
is used in the baseline FPGA implementation. We select
CPUs with the same technology to ensure a fair comparison.
The performance on a single core of the CPUs is multiplied
by the number of cores as the aggregated throughput. It is
important to note that all implementations being compared
have the same comparison accuracy.

Table IV shows the equivalent comparison performance of
different software and hardware designs of the collision de-
tection algorithm. Although the clock frequencies of FPGA
designs are an order of magnitude lower than that of a CPU
with the same technology node, the FPGA comparison data-
paths have similar performance to a single core on the CPUs.
The baseline FPGA designs are 2.09 to 4.08 times faster than
the software implementations due to their higher degree of
parallelism (i.e. more cores). The degree of parallelism is
significantly increased when mixed precision methodology
is applied to the FPGA designs. Additional speedups of 4.09
to 8.61 times are gained when we have prior knowledge
about the benchmarks and the speedups are reduced to 4.09
to 7.37 times when the knowledge is not available. The
major advantage of our mixed precision methodology is that
the additional performance gain does not come at a cost
of reduced comparison accuracy. Using the mixed precision
methodology, we can achieve 15.4 to 16.7 times speedup
compared with multi-cores CPUs with the same technology
at worst.

VII. CONCLUSION

In this paper, we propose a novel mixed-precision method-
ology for numerical function comparison in reconfigurable
systems. The methodology covers any application involving
function comparison and exploits customisable reduced-
precision data format which is only available in recon-
figurable systems. A model is developed for locating the
optimal precision and the optimal resource allocation. Ex-
perimental results for a common collision detection problem
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Table IV
PEFORMANCE OF DIFFERENT FUNCTION COMPARISON SYSTEMS.

device Intel Core 2 Virtex-5 Virtex-5 (mixed precision) Intel Xeon Virtex-6 Virtex-6 (mixed precision)
6420 (baseline) scenario I scenario II E5420 (baseline) scenario I scenario II

Technology node 65nm 40nm
# of core (reference-precision) 2 9 1 1 8 17 1-3 3
# of core (reduced-precision) - - 24-32 24 - - 87-108 87

clock frequency 2.13 GHz 223 MHz 199-337 MHz 2.53 GHz 285 MHz 285 - 408 MHz
throughput (single core) 0.24 0.22 not applicable 0.29 0.28 not applicable(G comparison/sec)
throughput (aggregated) 0.49 2 8.17 - 10.6 8.17 2.3 4.8 35.5-41.3 35.5(G comparison/sec)

Normalised speedupa 1x 4.08x 16.7 - 21.6x 16.7x 1x 2.09x 15.4 - 18x 15.4x
mixed precision gainb - 1x 4.09 - 5.29x 4.09x - 1x 7.37 - 8.61x 7.37x

a Normalised to the multi-core throughput of CPU within the same technology.
b Normalised to the multi-core throughput of reference-precision design on the same FPGA.

show that the methodology can provide additional perfor-
mance gain of 4 to 7.3 times over the baseline reference-
precision implementations on the same FPGAs.

Future work includes applying the methodology to other
hardware architectures having large performance difference
between different precision formats such as GPU, and
comparing the performance, area and energy efficiency of
different devices. The integration of our mixed-precision
method with other techniques such as data clustering is also
one of our future research directions.
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