
A MODEL FOR MATRIX MULTIPLICATION PERFORMANCE ON FPGAS

Colin Yu Lin∗, Hayden Kwok-Hay So

Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong
email: {linyu, hso}@eee.hku.hk

Philip H.W. Leong

Electrical and Information Engineering
The University of Sydney

Sydney, Australia
email: philip.leong@sydney.edu.au

ABSTRACT
Computations involving matrices form the kernel of a large
spectrum of computationally demanding applications for wh-
ich FPGAs have been utilized as accelerators. Their perfor-
mance is related to their underlying architectural and sys-
tem parameters such as computational resources, memory
and I/O bandwidth. A simple analytic model that gives an
estimate of the performance of FPGA-based sparse matrix-
vector and matrix-matrix multiplication is presented, dense
matrix multiplication being a special case. The efficiency
of existing implementations are compared to the model and
performance trends for future technologies examined.

1. INTRODUCTION

Dense and sparse linear algebra routines are extensively used
in scientific computing and form the computational kernel of
many applications in domains as diverse as computational
fluid dynamics, optimization, circuit simulation, financial
modelling, graph theory and acoustics.

Due to the importance of this problem, field program-
mable gate arrays (FPGAs) as compute accelerators for ma-
trix operations have been studied. These designs have been
able to combine parallel floating point operations with high
memory bandwidth in order to achieve higher performance
than microprocessors.

The performance of such accelerators, in turn, depends
on a number of factors: from high-level issues such as the
architecture of the computing device, memory organization,
the schedule of operations and data I/O; to low-level de-
tails such as I/O bandwidth, memory bandwidth and inte-
grated circuit technology. Given such complexity, perfor-
mance metrics are most accurately obtained through the mea-
surement of actual implementations on real hardware plat-
forms.

In spite of the large amount of work involved, this ap-
proach only gives a single point in the design space. The im-
plementation quality can therefore be quite difficult to judge,
∗This work was supported in part by the Research Grants Council of

Hong Kong project GRF 717009.

especially in cases where there are few prior results to com-
pare. Equally importantly, it is often difficult to extrapolate
the results to different architectures and technologies.

In an attempt to address the issues above, we present
a performance model for two key sparse computational ker-
nels: matrix-vector and matrix-matrix multiplications on FP-
GAs. The upper bounds on performance are expressed in
terms of the amount of available compute resources, on-chip
memory, and off-chip I/O bandwidth. Dense matrices are a
special case of the model. Previously published results are
also compared. Based on the model, trends for future FPGA
matrix computation performance are extrapolated.

The main contributions of this work can be summarized
as follows:

• A model of the upper bounds for performance of matrix-
vector multiplication and matrix-matrix multiplication
for dense and sparse matrices;

• Identification and prediction of performance bottle-
necks of the matrix primitives in current and future
technologies;

• Application of the model to explore the effects of tech-
nological improvements on matrix performance.

2. MATRIX OPERATIONS ON FPGAS

This section summarizes some key prior works on compu-
tation and I/O schemes for FPGA-based matrix operations.
These will form the foundation of our model which is de-
scribed in the next section.

2.1. Dense Matrix Multiplications

Dense matrix multiplications on FPGAs have been studied
for over a decade. In [1], a set of multiply-accumulators
(MACCs) was used for matrix-matrix multiplication. The
result matrix was divided into columns, and each MACC
was responsible for multiple columns of the results. Refer-
ence [2] presented a detailed architecture design using the

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.62

305

same computation scheme. A scheme to minimize I/O oper-
ation was also presented to support such computation.

A study of the performance of dot product, matrix-vector
and matrix-matrix operations for dense matrices was pre-
sented in 2004 [3]. This study was similar to our work in
that different bottlenecks were identified, past trends ana-
lyzed and the performance of future systems extrapolated.

As pointed out in references [3] and [4], the FPGA on-
chip memory was becoming the limiting factor for floating
point matrix-matrix multiplication because on-chip mem-
ory was no longer able to store all data required and gener-
ated for the whole multiplication. Block decomposition was
therefore required to divide the multiplication into smaller
block matrix-matrix multiplications. In [5], a square block
decomposition method with efficient on-chip memory uti-
lization and minimum I/O operations was presented.

2.2. Sparse Matrix-Vector Multiplication

Most previous works focused on accelerating sparse matrix-
vector multiplications as given by y = Ax, where x and y
are dense vectors, and A is a sparse matrix.

In one of the first reported implementations [6], each
result element in y was computed by summing the partial
products via a reduction circuit. Since the parallel multi-
pliers were limited to producing partial results of the same
result element in y, the multipliers were under-utilized in
certain cases leading to sub-optimal compute efficiency.

In [7] and [8], a different computation scheme was used.
Each result element was assigned to a different MACC. When
a MACC finished a data element, the next unassigned one
was allocated, this being repeated until all the results were
obtained. The overall computation efficiency was therefore
improved as none of the MACCs were idle during the com-
putation. Moreover, use of a MACC rather than a multiplier
allowed the final summation step to be eliminated.

In terms of data I/O, all the above designs initially stored
the sparse matrixA in off-chip memory and the dense vector
y on-chip. Non-zero data elements of A were then read in
during the course of computation. In [9], however, it was as-
sumed that both A and y were initially stored on-chip. Sim-
ilar to previous designs, MACCs were used to carry out the
compute tasks, but in contrast to the previous cases, a high-
level synthesis technique was developed to assign operations
to the MACCs. As a result, the computation of a result el-
ement could end up being carried out on different MACCs,
and extra on-chip communications become necessary.

2.3. Sparse Matrix-Matrix Multiplication

A sparse matrix-matrix multiplication is given by C = AB
where A is sparse and B is dense. Unlike sparse matrix-
vector multiplication, very limited work has been performed
to accelerate sparse matrix-matrix multiplication on FPGAs.

We are only aware one previous work addressing this
problem [10]. This implementation used a similar compu-
tation, I/O and block decomposition scheme to the dense
multiplier design in [5]. Extra circuits were incorporated to
handle the index information of non-zero data elements from
the sparse matrix and to control on-chip memory access.

3. PERFORMANCE MODEL

Although the performance of matrix computations on FP-
GAs depend on numerous factors such as data I/O schedul-
ing, there is fundamental limit on its performance that de-
pends on architectural parameters such as I/O bandwidth
and resource availability. A model that relates theoretical
peak performance to these parameters is developed in this
section. Performance is measured by its throughput, which
is expressed as the number of basic compute operations com-
pleted per second, denoted OPS. The data type is not speci-
fied as it does not affect the theoretical performance model.

We assume that all input data are initially stored off-chip
and must be loaded onto the FPGA fabric during the opera-
tion. Similarly, the results of the computation are written to
off-chip memory. An aggregated bandwidth of b is available
between off-chip memories and the FPGA. Once transferred
to the FPGA, m words of on-chip memory are available for
holding temporary results. For the sake of peak performance
modeling, on-chip memories are assumed to have infinite
bandwidth. Therefore, any compute element may take data
from any memory location at any time.

MACCs are used exclusively as compute elements. Each
MACC is able to complete one multiply-accumulate opera-
tion per cycle, and operates at a frequency of f Hz. To con-
struct a MACC on the target FPGA, rmacc units of resource
must be used. Assuming a total of r units are available, the
number of MACC units available will be k =

⌊
r

rmacc

⌋
.

Without loss of generality, matrices are assumed to be
n×n in size. We denote the density of non-zero elements in
a sparse matrix α, i.e. if the number of non-zero elements is
N and the total number of elements is N , then α = N

N . For
sparse matrices, 0 < α� 1, Dense matrices are handled by
α = 1 and are a special case of our sparse model.

Finally, since we are mainly concerned with high per-
formance computations on large matrices, we assume that
n,m� k > 1.

3.1. Compute and I/O-Memory Performance Bounds

The performance of an FPGA matrix computation depends
on two important sets of architectural parameters: compute
resources and I/O bandwidth. The amount of compute re-
sources available clearly limits the maximum possible num-
ber of operations committed each cycle. We call this the

306

computational bound, OPScomp. Since each MACC gener-
ates one result each cycle by performing 1 add and 1 multi-
ply operation, the peak performance is:

OPScomp = 2kf. (1)

Since input data must be read from off-chip memories be-
fore any computation can be performed, overall performance
may be also be limited by data I/O bandwidth. Even assum-
ing perfect data I/O scheduling, limited on-chip memory re-
sources dictate the amount of data I/O that can be performed.
We call this the I/O-memory bound:

OPSio =
Qop
Qio
· b (2)

where Qop denotes the number of compute operations re-
quired and Qio denotes the number of I/O operations re-
quired. Since the FPGA performance is limited by either
the compute or the I/O-memory bound, (1) and (2) give an
upper bound on performance:

OPSmax = min

{
2kf,

bQop
Qio

}
. (3)

3.2. Matrix-Vector Product

Independent of the data I/O and computation schedule, the
number of compute operations is given by:

Qop = 2αn2. (4)

In contrast, Qio depends on n, as well as the data I/O
schedule, which in turn, is a function of on-chip memory
size m. For large matrices, block decomposition is usually
employed so that the current set of data can fit within the on-
chip memory. In this work, we assume thatA is decomposed
into n2

µrµc
sub-matrices of size µr × µc. Correspondingly,

x and y are decomposed into µc × 1 and µr × 1 blocks
respectively for each block matrix-vector multiplication.

In a block matrix-vector product, the number of non-
zero data elements read from sub-block Ar,c is αµrµc. The
corresponding sub-vector of x, xc, must also be read from
off-chip memory. Note that this is unnecessary if all the data
elements in the i-th column ofAr,c are zero. The probability
that at least one non-zero element exists in a column of Ar,c
is given by βx = 1−(1− α)µr . Consequently, the expected
number of input data elements needed from xc is βxµc.

In addition, the vector y must be stored to off-chip mem-
ory and this consumes data bandwidth. Assuming m ≥ µr,
it is possible to schedule the compute operations so that the
sub-vector yc is only stored once at the end of the compu-
tation. Again, this is unnecessary if all data elements in the
i-th row ofAr,c are zero, and the probability that at least one

non-zero element exists is given by βy = 1− (1− α)n. The
number of output I/O is thus βyn, yielding:

Qio = (αµrµc + βxµc)·
n2

µrµc
+βyn = αn2+

βxn
2

µr
+βyn.

(5)
To minimize Qio, µr should be maximized by setting µr =
m. As a result, from (3), (4) and (5),

OPSmax = min

{
2kf,

2b

cmv

}
(6)

where cmv = 1 + 1
α

(
βx

m +
βy

n

)
.

3.3. Matrix-Matrix Product

The sparse matrix-matrix product is given by C = AB,
where A is an n × n sparse matrix with a density of non-
zero data elements equals to α. B and C are usually dense
n× l matrices where 1 < l� n.

Similar to the case of sparse matrix-vector multiplica-
tion, independent of data I/O and compute schedule, the to-
tal number compute operations is given by:

Qop = 2αn2l. (7)

The number of data I/O is similarly dependent on the
block decomposition scheme and I/O schedule. Assume that
matricesA,B andC are decomposed into µAr×µAc, µBr×
µBc and µAr × µBc sub-matrices respectively. It follows
that µAc = µBr = µs. We assume the on-chip memory is
large enough to hold partial results of one block of matrix C
during the computation, i.e.,

m ≥ µArµBc . (8)

Qin is the amount of data that needs to be transferred
from A and B. For each sub-matrix of A, αµArµs elements
of data must be read. If all the data in the i-th column of A
are zero, it is unnecessary to read in the i-th row in the corre-
sponding blocks from matrix B. If the probability of a non-
zero column in the sparse block A is βB = 1− (1− α)µAr ,
then the expected number of input data elements from the
corresponding block of matrix B is βBµsµBc. The total
number of block matrix-matrix products is n2l

µArµsµBc
, so

Qin = (αµArµs + βBµsµBc)
n2l

µArµsµBc
.

Data output is similar to the matrix-vector product case.
The total number of data output Qout = βCnl, where βC =
1− (1− α)n, and the total amount of data I/O is given by:

Qio = Qin +Qout =

(
α

µBc
+

βB
µAr

)
n2l + βCnl (9)

From (8) and (9), we can see that µs has no effect on
the FPGA on-chip memory utilization and compute perfor-
mance. Therefore, µs = n should be satisfied to avoid un-
necessary I/O. To minimize Qio in (9) subject to (8), the

307

Table 1. Summary of matrix multiplication model
Operation Condition Limiting Factor OPSmax

Matrix- kf < b
cmv

computation
⌊

R
rmacc

⌋
· 2f

Vector
Product kf > b

cmv

on-chip memory
and IO bandwidth

2B
cmv

Matrix- 2kf <
√
mb

cmm
computation

⌊
R

rmacc

⌋
· 2f

Matrix
Product 2kf >

√
mb

cmm

on-chip memory
and IO bandwidth

√
MB

cmm

following block sizes should be chosen:

µAr =

√
βBm

α
, and µBc =

√
αm

βB
. (10)

In the case when α = 1, βB = βC = 1, and µAr = µBc =√
m, showing that a square block decomposition of C gives

the best results. This is consistent with previous works.
Finally, from (3), (7), (9) and (10), we have

OPSmax = min

{
2kf,

√
mb

cmm

}
(11)

where cmm =
√

βB

α +
√
mβC

2αn .

3.4. Summary

The performance model for sparse matrix-vector and matrix-
matrix products are summarized in Table 1. This table al-
lows one to design and evaluate matrix multiplication accel-
erators on FPGAs. As an example, consider the design of
a dense matrix-matrix multiplier. If the system I/O band-
width is a constraint of the design, to ensure maximum per-
formance, the number of MACCs should be k ≥

√
mb
2f .

4. MODEL EVALUATION

To evaluate the validity of the model, previously published
results on FPGA matrix accelerations are compared against
the performance determined by the model under the same
architectural constraints. The results are shown in Table 2.

Although matrix operation accelerations on FPGAs have
been extensively studied, only a selected subset involving
double precision floating-point are included in the table. Fur-
thermore, to the best of our knowledge, there has only been
one prior work on accelerating sparse matrix-matrix multi-
plications on FPGAs [10]. An improved version of that de-
sign using the optimal block decomposition scheme of equa-
tion (10) was used in this study. A total of 26 sparse matri-
ces from the University of Florida Sparse Matrix Collection
were used in the implementation and 3 of the representative
results are shown in Table 2.

Fig. 1. Left: Sparsity pattern of ‘rajat21’. Right: All-zero
(white) and not all-zero (black) block columns of ‘rajat21’

4.1. Model and Implementation Comparison

For dense matrix-vector and matrix-matrix multiplications,
the reported performance lies within 95% of the model, in-
dicating that the model has good predictability of actual per-
formance. At the same time, the results also show that pre-
viously published accelerators have been performing close
to optimality given the architectural constraints of the time.

For sparse matrix-vector multiplication, however, the re-
ported implementation performance reached only 77-80%
of the maximum performance. Moreover, in the case of
sparse matrix-matrix multiplication, the implemented results
ranged from 86% to 125% of the predicted performance.

This unpredictability stems from the fact that non-zero
data elements were assumed to be randomly distributed in
the model, while in practice, data in sparse matrices usually
exhibit relatively regular organizations. As an example, the
input sparse matrix ‘rajat21’ is shown in Figure 1. On the
left it shows the location of non-zero elements in the matrix.
On the right hand side of Figure 1, the black areas represent
the columns in the sparse block with non-zero data, and the
white areas represent zero columns.

According to the assumption that non-zero elements are
randomly distributed, the probability of a non-zero column
in the sparse block is βB = 78%. However, as can be seen
in Figure 1, in actuality it is approximately 40%. Such a reg-
ular sparsity pattern reduces I/O operations of matrix B by
about 38% and as a result, the implementation performance
is about 25% better than the model performance.

On the other hand, for input matrices such as ‘appu’ in
the table, the non-zero input data are distributed relatively
randomly. As a result, the implemented results are within
1% of the predicted performance by the model.

4.2. Performance Bounds

The model is useful as a guideline for implementation and
to determine performance bottlenecks. For instance, con-
sider the first row of Table 2. Although the FPGA device
supported up to 21 MACCs, only 4 were used in the im-
plementation. Yet, when the available I/O bandwidth in the

308

Table 2. Comparison of model against published results.
Sparse Size Density Performance (GFLOPS) MACCs k Bandwidth b (GWords/s)

Work Op. FPGA Matrix n α (%) Impl. Model ratio Impl. Avail Req’d Avail
[11] DMxV XC2VP50 - - - 1.355 1.4 96.8% 4 21 0.7 0.7
[12] XC2V6000 - - - 4.5 4.7 95% 16 16 0.06 -
[13] XC2VP30 - - - 1.79 1.8 99.4% 9 9 0.07 -
[11] XC2VP50 - - - 2.06 2.08 99% 8 8 0.06 2.1

XC2VP125 - - - 8.3 8.3 100% 24 24 0.17 -
[14] DMxM XC2VP125 - - - 6 6 100% 24 24 0.12 -
[4] XC2VP125 - - - 15.6 15.6 100% 39 39 0.31 0.4

[15] XC4VLX200 - - - 4.8 4.8 100% 12 12 0.12 -
[16] XC5VSX240T - - - 29.8 29.8 98.7% 40 40 0.44 0.75
[6] XC2VP70 radfsky3 21,200 0.33 2.16 2.79 77% 8 8 1.44 1.8

Virtex II Pro lhr11c 10,964 0.19 1.49 1.69 88% - - 1.05 1.06
[7] SpMxV Virtex II Pro garon2 13,535 0.2 1.64 1.91 86% - - 0.93 1.06

Virtex II Pro olafu 16,146 0.39 1.67 2.02 83% - - 0.53 1.06
[8] XC4VLX200 radfsky3 21,200 0.33 1.55 1.94 80% 8 12 1 1

XC6VLX760 heart1 3,557 10.95 76.13 86.73 86% 147 147 0.55 0.8
this SpMxM XC6VLX760 appu 14,000 0.95 37.79 37.85 99.85% 65 147 0.8 0.8

XC6VLX760 rajat21 411,676 0.0011 1.63 1.3 125% 3 147 0.8 0.8

system is considered, it becomes apparent that performance
is limited by a low bandwidth of 0.7 GWords/s.

Similarly, all the reported sparse matrix-vector multipli-
cation implementations were I/O bound.

In the cases of dense matrix-matrix multiplication, all re-
ported implementations were limited by compute resource
availability. The maximum number of MACCs was em-
ployed in all cases as a result.

The performance of sparse matrix-matrix multiplication
is dependent on the sparsity of the input matrix. Out of the
26 cases tested, only one input matrix, ‘heart1’, resulted
in a design that is computation bound. The large value of
α = 10.95% caused the design to behave closer to a dense
matrix multiplication. The implementation performance is
about 86% of the model performance, with the overhead be-
ing mainly due to the time to store the result matrix C. The
rest of the 26 matrices tested were on-chip memory and IO
bound because of their low sparsity.

5. TECHNOLOGY TRENDS

Given the peak performance model presented in previous
sections, we are now in the position to investigate the trends
in technology and how they will affect the role of future
FPGA-based matrix accelerators.

To provide a historical perspective of FPGA technology,
the largest device from each generation of the Xilinx Vir-
tex family were used in this study. The computation bound
(OPScomp) and the I/O-memory bound (OPSio) for each
device were calculated according to datasheets and imple-
mentation results. The theoretical matrix-matrix multipli-
cation performance bounds were then computed according
to our model, and the results presented in Figure 2. In the
same figure, an exponential fit was made to extrapolate into
the future.

2000 2005 2010 2015 2020 2025 2030 2035 2040
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Year

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

"MaxIO Bound (Dense)"
"DDR Bound (Dense)"
"MaxIO Bound (50−Sparse)"
"DDR Bound (50−Sparse)"
"MaxIO Bound (1−Sparse)"
"DDR Bound (1−Sparse)"
Compt. Bound

Fig. 2. Matrix-matrix multiplication performance bounds
for Xilinx Virtex series FPGAs.

To apply the model, k was defined as the maximum num-
ber of double-precision floating-point MACCs implement-
able with both logic and DSP resources on-chip, and f the
maximum operating frequency of the MACC. m was the
maximum number of double-precision floating-point words
that can be stored using on-chip BlockRAMs. Two cases of
I/O were considered. In the case of using memory as off-
chip storage, the I/O bandwidth b was defined as the raw
bandwidth of one DDR memory port using the best indus-
trial DDR standard supported by the device at the time of
its release. In the second case, we considered the aggre-
gated raw I/O bandwidth of all user configurable I/O pins
of the device when configured as differential pairs running
at maximum frequency. Finally, we used a large matrix size
of n = 100, 000 in the result. Although this value is ap-
propriate for a sparse matrix, it is too large for dense matrix

309

operations. Fortunately, n has little effect on the dense ma-
trix performance model bound.

5.1. Computation Resource vs. I/O-Memory Bound

As shown in Figure 2, whether a design is compute resource
or I/O-memory bounded depends on the sparsity of the input
matrix. This is because, according to (11), the computation
bound, OPScomp = 2kf , is independent of α, while the
I/O-memory bound, OPSio is a strong function of α.

The performance of dense matrix-matrix multiplication
(α = 1) on FPGAs has been compute resource bound over
the past decade. Moore’s Law has meant that an exponential
increase in k has been enjoyed. Beyond technology scal-
ing, increasingly better floating point units that consume less
logic resources and run at higher clock rates have also con-
tributed to the continuous increase in compute performance.

With the amount of FPGA logic resources increasing at
a much higher rate than I/O bandwidth, it is projected that
performance will eventually become I/O-memory bound. In
Figure 2, this occurs around the year 2030. However, the
crossover point may be reached far earlier if, for instance,
the compute units become faster or smaller by incorporating
hard floating-point units in future FPGAs.

5.2. Sparsity vs. I/O-Memory Bound

An n × n matrix is q-sparse if the number of non-zero ele-
ments is qn. In the case of a “1-sparse” matrix (e.g. a diag-
onal one), it can be seen in Figure 2 that, in the past, perfor-
mance has been limited by the I/O-memory bound. Based
on the analysis in the previous subsection, the gap between
OPScomp and OPSio will widen in the future.

The tradeoff between compute and I/O-memory bound
approaches that of a dense matrix computation as q increases.
Take the case of q = 50, i.e., α = 0.05% as an example. The
performance of sparse matrix multiplications has been com-
putation resource bound until approximately 2005. Since
2006, it has become I/O-memory bound.

Currently, I/O performance is the limiting factor for both
matrix-vector and sparse matrix-matrix multiplication. Per-
formance improvements may thus be achieved through the
use of multiple DDR memory ports or high speed serial I/Os.
Progress in I/O performance will also delay the crossover
point for dense matrix-matrix multiplication.

6. CONCLUSION

An analytical model which relates FPGA-based dense and
sparse matrix multiplication performance to architectural and
system parameters was described and its output shown to
closely match that of previously published designs.

Performance estimates for future technologies were ex-
trapolated. It was shown that currently, very sparse prob-

lems are I/O-memory bound whereas dense problems are
computation resource bound. In the future, however, it is
likely that the performance of matrix-matrix multiplication
will be bounded by I/O bandwidth and the amount of on-
chip memory. Research to improve in this area is urgently
needed so that increases in logic resources due to Moore’s
Law can be accompanied by comparable increases in I/O
bandwidth and on-chip memory capacity.

In future work, we will extend the model to account for
common sparse matrix types such as banded, triangular, Jor-
dan normal form etc. We will also study higher level linear
algebra operations such as eigenvalue solvers, iterative lin-
ear solvers and factorization-based linear solvers.

7. REFERENCES

[1] W. Ligon III, S. McMillan, G. Monn, K. Schoonover,
F. Stivers, and K. Underwood, “A re-evaluation of the prac-
ticality of floating-point operations on FPGAs,” in Proc.
FCCM, 1998, pp. 206–215.

[2] J. Jang, S. Choi, and V. Prasanna, “Energy-Efficient Matrix
Multiplication on FPGAs,” in Proc. FPL, 2002, pp. 534–544.

[3] K. Underwood and K. Hemmert, “Closing the gap: CPU
and FPGA trends in sustainable floating-point BLAS perfor-
mance,” in Proc. FCCM, 2004, pp. 219–228.

[4] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydad-
jiev, “64-bit floating-point FPGA matrix multiplication,” in
Proc. FPGA, 2005, pp. 86–95.

[5] L. Zhuo and V. Prasanna, “Design tradeoffs for BLAS opera-
tions on reconfigurable hardware,” in Proc. ICPP, 2005.

[6] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multipli-
cation on FPGAs,” in Proc. FPGA, 2005, pp. 63–74.

[7] Y. Zhang, Y. H. Shalabi, R. Jain, K. K. Nagar, and J. D.
Bakos, “FPGA vs. GPU for sparse matrix vector multiply,”
in Proc. FPT, 2009, pp. 255–262.

[8] G. Kuzmanov and M. Taouil, “Reconfigurable sparse/dense
matrix-vector multiplier,” in Proc. FPT, 2009, pp. 483–488.

[9] M. DeLorimier and A. DeHon, “Floating-point sparse
matrix-vector multiply for FPGAs,” in Proc. FPGA, 2005.

[10] C. Y. Lin, Z. Zhang, N. Wong, and H. K.-H. So, “Design
space exploration for sparse matrix-matrix multiplication on
FPGAs,” in Proc. FPT, 2010, pp. 369–372.

[11] L. Zhuo and V. K. Prasanna, “High performance linear alge-
bra operations on reconfigurable systems,” in Proc. SC, 2005.

[12] S. G. Ziavras, “H-SIMD machine: configurable parallel com-
puting for matrix multiplication,” in Proc. ICCD, 2005.

[13] G. Kuzmanov and W. M. V. Oijen, “Floating-point matrix
multiplication in a polymorphic processor,” in Proc. FPT,
2007, pp. 249–252.

[14] L. Zhuo and V. K. Prasanna, “Scalable and modular algo-
rithms for floating-point matrix multiplication on FPGAs,” in
Proc. IPDPS, 2004, p. 92.

[15] P. Russek and K. Wiatr, “Dedicated architecture for double
precision matrix multiplication in supercomputing environ-
ment,” in Proc. DDECS, 2007, pp. 1–4.

[16] V. B. Y. Kumar, S. Joshi, S. B. Patkar, and H. Narayanan,
“FPGA Based High Performance Double-Precision Matrix
Multiplication,” in Proc. VLSID, 2009, pp. 341–346.

310

