
FPGA-based SIMD Processor

Stanley Y.C. Li, Gap C.K. Cheuk, K.H. Lee and Philip H.W. Leong�
ycli,ckcheuk,khlee,phwl � @cse.cuhk.edu.hk

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT Hong Kong

Abstract

A massively parallel single instruction multiple data
stream (SIMD) processor designed specifically for crypto-
graphic key search applications is presented. This design
aims to exploit fine grain parallelism and the high memory
bandwidth available in an FPGA by integrating 95 simple
processors and memory on a single FPGA chip. Perfor-
mance is compared with a previously reported hardwired
design on a RC4 key search application.

1 Introduction

Although field programmable gate arrays (FPGAs) can
have high performance gains over equivalent microproces-
sor based systems, they have the disadvantage that the de-
sign time is much higher than for an equivalent software
based system. In this paper, we present a parallel single
instruction multiple data stream (SIMD) processor which
aims to achieve high performance, yet be programmable in
software so that the FPGA design need not be changed for
different applications. The processor was designed so that
it could be used to efficiently implement an RC4 key search
engine [1], but is hopefully not limited to this application.
Furthermore, compilation from a high level language to this
machine should be possible.

2 Architecture

The processor has an instruction set which has been
modified from the Microchip Technology PIC processor. It
is organized in a Harvard architecture, the instruction width
being 16-bits and the data width 8-bits. The implementa-
tion is organized in a 3-stage pipeline (fetch, decode and
execute). Most instructions take 1 cycle but transfer of con-
trol and block RAM access instructions incur an extra cycle
of delay and hence require software interlocking.

There are three types of data storage associated with the
processor, all being 8-bits in width. W is a single register;
the register file has a total of 16 registers, two (MARA and
MARB) being special purpose registers for memory access
instructions, RANK is used to identify the individual pro-
cessors and the others are general purpose; and the dual port
block RAM which is a 512-byte storage. The instruction set
of the processor is summarized in Table 1 and the datapath
is shown in Figure 1. Program memory is implemented in a
single block RAM.

Mnemonic Description Cycles
Control operation
NOP - No operation 1
SLEEP - Go into standby mode 1
BTAXSC k Compare AX skip if � 1(2)
BTCSC - Bit test C skip if clear 1(2)
BTESC - Bit test E skip if clear 1(2)
PORTIN - Load port input to W 1
Byte-oriented register memory operation
ADDWF f, d Add W and f (set C) 1
CLRF f Clear f (clear C) 1
INCF f, d Increment f (set C) 1
XORWF f, d XOR W and f 1
MOVF f, d Move f 1
CMPWF f Compare W with f (set E) 1
Literal operation
MOVLW k Move literal to W 1
GOTO k Unconditional branch 2
Memory operation
MOVMW f, p Move memory to W 2
MOVWM f, p Move W to memory 1
SWAP f, p Swap memory 2(1)

Table 1. Instruction set overview. ‘f’ is a reg-
ister file designator ‘d’ is a destination desig-
nator, ‘k’ is an 8-bit literal value and ‘p’ repre-
sents bank 0 or 1 of the block RAM.



Program

memory Register

file

din dout
M
U
X

regdin

0

Working

register

WE

din dout

wwrite

M

U
X

wdin
(7-0)

PC

adder
M

U
X

1

address

inst

(7-0)

addr

WE

mar_a

mar_b

(3-0)

regwrite

Dual port

memory

din_a

dout_a

addr_a

WEA

addr_b

din_b

bank_a

bank_b

dout_b

memwrite_b

M

U
X

memaddr_a

M

U
X

memdin_a

ALU

M

U
X

1

opcodeWEB

memwrite_a

pc_select

operand

M

U
X

NOP operation

inst

(5)

Control
Unit

(11-8)

Instruction Decoder Processing Unit

inst
pc_select

wwrite
regwrite
memwrite_a
memwrite_b

wdin
regdin
memdin_a
memaddr_a
operand

opcode

Figure 1. The overall datapath with control signals

3 Results

A SIMD processor consisting of 95 processor cores plus
program memory was developed on a Xilinx Virtex 1000E-
6 FPGA device, fully utilizing all available block RAMs on
the device. The design occupied 9,210 slices (74% utiliza-
tion) and had a maximum clock frequency of 68 MHz. The
critical path is currently in the high fanout signals which
distribute the instructions to the processor cores. For the
RC4 key search application, no communications between
cores are necessary.

An RC4 key search engine application was developed in
assembly language for the SIMD processor. The RANK is
the first key tested in each processing unit. If the 95 parallel
searches fail, the processing unit adds 95 to the key to be
tested and it is repeated. When the key is found, the RANK
and iteration number are sent to an output port.

This implementation requires 14 cycles for initialization.
Thereafter, 4,520 cycles are required to test a key, equiva-
lent to 15,000 keys per second per processing unit. With 95
processors operating in parallel, the overall throughput is
1,425,025 keys per second. An equivalent FPGA design re-
ported by our group where the RC4 datapath is completely
hardwired achieved a throughput of 6 million keys per sec-
ond [1] and a highly optimized software implementation on
a 1.5 GHz Intel Pentium 4 processor achieves 100,000 keys
per second. Thus the SIMD implementation was ����� faster
than the software based implementation on a 1.5 GHz Pen-

tium 4 and ��� slower than a hardwired design.

4 Conclusions

An SIMD processor was applied to the RC4 keysearch
problem and able to achieve a high level of parallelism as
well as utilize the higher memory bandwidth available on
the device. Although the design was ��� slower than a hard-
wired design, the development time for an application us-
ing this machine is significantly lower since designers can
adopt a purely programming based model and need not be
concerned with lower level details such as datapath design,
control design, place and route, design optimization etc.
The SIMD approach also has benefits in that the design can
be amortized over many different applications potentially
resulting in a large overall savings in development effort.
Finally, using this approach, there is potential to customize
the instruction set of the processor as well as to add copro-
cessing elements to further accelerate applications.

References

[1] K.H. Tsoi, K.H. Lee, and P.H.W. Leong. A massively parallel
RC4 key search engine. In Proceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
pages 13–21, April 2002.

2


