
MULLET - A PARALLEL MULTIPLIER GENERATOR

K. H. Tsoi and P. H. W. Leong

Computer Science and Engineering Department,
The Chinese University of Hong Kong

email:{khtsoi, phwl}@cse.cuhk.edu.hk

ABSTRACT

A module generator called Mullet for producing near-optimal
parallel multipliers in a technology independent manner is
presented. Using this tool, a large number of candidate de-
signs can be generated in order to find combinations of prim-
itive elements which produce the best multiplier. The process
of multiplication is broken down into a partial product gen-
erator (PPG) and a partial product summer (PPS). Both of
these tasks can be done in a number of different ways and
the best solution depends on the size of the required mul-
tiplier as well as the technology used. Mullet can be com-
bined with a searching algorithm to find the best multiplier
based on some objective. It can generate high quality multi-
pliers for irregular architectures such as FPGAs and use fea-
tures such as the dedicated multipliers. The tool can also be
used to explore tradeoffs between architectures and to cal-
librate timing models of the primitive components. Synthe-
sized examples using Xilinx FPGA devices are comparisons
are made with those produced by the Xilinx CoreGenerator
and XST tools.

1. INTRODUCTION

Although a wealth of knowledge exists about parallel multi-
plier design, the best architecture is dependent on the desired
multiplier size and the technology which is used. For exam-
ple, for a small multiplier, the partial products (PPs) might
be best generated using a simple AND structure and ripple
carry adders used to accumulate them. For larger sizes, a
Wallace tree might be faster. Furthermore, the crossover
point where the Wallace tree is faster depends on the VLSI
technology used as well as whether the design is on an appli-
cation specific integrated circuit (ASIC) or a field program-
mable gate array (FPGA).

Many different parallel multiplier architectures have been
proposed in the literature (e.g. [1, 2]). High speed multipli-
ers typically reduce the number of PPs in the partial product
generator (PPG) stage via Booth’s encoding and reduce the
number of logic levels in the partial product summer (PPS)
using tree structures. Different kinds of adders can also be
used in the PPS stage. Some FPGA devices have hardwired

dedicated multiplier units and practical multiplier module
generators should use them when appropriate. Given the
bewildering number of choices, it is difficult even for an ex-
pert to find an optimal multiplier without investing a large
amount of time to the task.

In this work we describe an automatic multiplier gener-
ator calledMullet (MULtpLiEr Tool) that can generate mul-
tipliers which are a combination of simpler primitive ele-
ments. A search through the different combinations can eas-
ily explore tradeoffs. Furthermore, by synthesizing a num-
ber of designs and recording their performance, Mullet can
determine its own timing, area and power model parameters
and callibrate itself. To the best of our knowledge, no other
multplier module generator is able to consider all of these
issues in a unified manner. We apply this system to the gen-
eration of parallel multipliers for Xilinx Virtex FPGAs [3]
and show that the multipliers generated by our tool are bet-
ter than those of the Xilinx CoreGenerator and XST tools
for large multiplier sizes.

The rest of the paper is organized as follows: In Sec-
tion 2, we review parallel multiplier architectures which are
used as primitive elements in our tool. In Section 3 we de-
scribe our tool in detail. In Section 4, we present experimen-
tal results obtained on FPGAs. Finally we draw concludes
about this work in Section 5.

2. MULTIPLIER ARCHITECTURES

In this section we briefly review the basic architectures of
the multiplier primitive elements which are used in our tool.
For a more extensive treatment, we refer readers to the ref-
erences cited and computer arithmetic textbooks [1, 4, 5, 2].

In this work, we assume that inputs are in two’s comple-
ment format and we perform parallel signed multiplication
of ann-bit multiplicandA with anm-bit multiplier B. The
resulting productP is n + m bits in size. Figure 1 shows
the basic architecture of a 4-bit parallel multiplier. The mul-
tiplier can be broken down into two independent units, the
PPG and PPS.



Multiplicand A

+)
+)

sign Ext

3

2

1

0

Multiplier B

+)

0

3 2 01

7
p

6 5 4 3 2 1 0
p p p p p p p

33 32 31
p

30
p

23 22 21 20

13 12 11
p

10

03 02 0001

pp
p ppp

p p p
p p p

b

p

bbb
aaaa

PP
PP

PP
PP

3 2 1

Fig. 1. A 4-bit parallel multiplier showing the partial prod-
uct generator and summer.

MUX B B5..B1 B3..B−1 1B..

−A 2A

Multiplicand (A)

0A−2A

Multiplicand Generator

PP3

MUX

PP2

MUX

PP1

3

Fig. 2. Radix-4 MBE circuit.

2.1. Partial Product Generators (PPGs)

AND scheme

In Figure 1, the partial productsPP0 − PP3 are com-
puted by forming the bitwise AND ofbi with A, i.e. PPi =
biA. Using this method, the number of PPs generated is
m and the length of each PP isn. We call this method for
generating the partial products theANDscheme. For signed
multiplication, the PPs should be sign extended as shown in
the figure.

Modified Booth Encoding (MBE)

The modified Booth’s algorithm [6] considers multiple
bits of B. If two bits are considered (radix-4), the partial
products are generated according to a coding table. Figure 2
shows the circuit for the modified Booth encoding (MBE)
PPG, with a lookup table being used to produce the appro-
priate multiplexor selection according to three bits of mul-
tiplier B. PPi is formed from bitsB2i+1, B2i andB2i−1

(B−1 = 0) so onlydm/2e partial products are generated,
half as many as for the AND scheme. The scheme can be
generalized to higher radixes, a radix-8 MBE scheme re-
quiring only dm/3e partial products. This is, of course, at
the expense of a more complex partial product generation
scheme. Variants of Booth’s algorithm can further improve
performance by introducing more complicated encoders [7]
and conditional-sum adders [8].

final adder

10

03 02 0001

pp
p ppp

p p
p p p ppppp

pp
p p pp

p p

01 000203

10
p

111213

20212223

p
30

p
313233

a
bbbb

aa
1 023

0123

a

p

p
7 6 5 4 3 2 1 0

p p p p p p p

p

a

3 2 1 0

3 2 01
a a

b b b b
a

33 32 31
p

30
p

23 22 21 20

13 12 11
p

(a) TDM model for PPS.

[8]
4

3

2

1

4

2

3

1

11 1 31 11 2 7[ ]

2 2

3

8

[1 1 1 2 3 7]

[2 2 2 3 7]

[3 3 7]

(b) Three-greedy scheme for 9 in-
puts example.

Fig. 3. TDM model and 3-greedy scheme.

2.2. Partial Product Summers (PPSs)

Weighted Sum (WS)
The PPs produced by a PPG must be summed in order to

form the final result. A straightforward way to do this is to
use an array of adders to form the weighted sum of the PPs
as show in Figure 1.

The array can be constructed using simple carry ripple
adders (CRAs) or faster schemes such as carry look-ahead
or carry select adders. For ripple adders, the critical path is
the Manhattan distance from the LSB of the first PP to the
carry out from the MSB of the last PP. This delay can be
modeled as a carry chain of lengthn + m and is shown as
the dotted line in Figure 1.

Three Dimensional Method (TDM)
The three dimension method (TDM) proposed in [9] and

[10] uses compressor trees to sum the partial products and a
delay balancing scheme so that signal delays are minimized
in a globally optimal manner. For each weight, trees are
used to produce two equal weight bits of output, shown as
vertical lines connected to the final adder of Figure 3(a).

An optimal method for interconnecting the compressors
to reduce the global delay for the TDM has been reported
by Stelling [10]. Unfortunately, the computational require-
ments are extremely high. So this method is not suitable for
schemes such as ours in which a search over many different
multipliers is proposed. We employ the three-greedy algo-
rithm [9, 10] which produces multipliers of similar quality
but is several orders of magnitude faster. Figure 3(b) shows
an example of using the three-greedy algorithm to compress
9 inputs. Circled numbers represent the order of compressor
generation and numbers beside the signals represent the de-
lay of the line. The delays of the inputs to the compressors
are (1,1,1,1,1,1,2,3,7). The updated available input delay list



after each compressor was generated are also shown on the
right. It can be seen that inputs which have large delay are
placed in positions with minimum delay to the output. The
technique just described uses 3:1 compressors but this can
be generalized to deal with higher compression ratio.

3. MULLET ARCHITECTURE

Mullet combines the primitive elements described in the pre-
vious section to create multipliers of arbitrary size. In this
section, the architecture of Mullet is described in detail in a
bottom-up fashion.

To isolate the PPG and PPS parts of a multiplier circuit,
we create a generalizedPP object in CAST. APP object
represents a partial product which has no logic or circuitry
associated with it. The attributed associated with thePPob-
ject include the weight of the LSB and the maximum delay
from the primary input of the circuit, which is used in the
TDM design.

Hardware Multipliers (HWMs)
Modern FPGA devices such as the Xilinx Virtex-II have

dedicated hardware signed multipliers of fixed input size [3].
These do not use the logic resources of the FPGA and are
usually faster than a similar multiplier built from the FPGA’s
logic resources. The HWM element is represented as a prim-
itive object in CAST. For the Xilinx Virtex II devices consid-
ered in this work, the multiplier is18× 18-bit signed multi-
plier which can be used as a17×17-bit unsigned multiplier.
Larger multipliers can be constructed from HWMs.

In order to break a large multiplier into smaller ones the
system first partitions the multiplier and multiplicand into
several smaller bit segments. If the input segment includes
the MSB, it is signed extended to 18-bits. Otherwise, a
17-bit (or smaller) unsigned HWM is used. For maximum
speed and minimum logic utilization, a HWM should be
used where possible. Unfortunately, the number of HWM
resources on an FPGA device is limited and there are often
situations in which the user may want to save some of the
HWMs for other parts of the design. In Mullet, the user can
specify how many HWMs to use. The system will assign
the HWMs to the least significant segments first and thus
reducing the critical path delay of the circuit.

Modified Booth Encoding
Mullet currently supports radix-4 and radix-8 MBE prim-

itives which are called MBE3 and MBE4 respectively since
they scan 3 and 4 bits at a time. In the MBE3 example, the
2A output is generated by shifting the inputA and has no
logic delay. Output−A is generated by 2’s complementing
A and requires ann-bit adder. The−2A output is generated
by shifting the−A value. The total cost of multiplicand gen-
erator is an n-bit adder in MBE3 and a 5-to-1 MUX. Mullet
will first generate the± multiplies from the multiplicand. It

then segments the multiplier B according the number of bits
to be scanned (currently 3 or 4). The final step is to make
connections to the MUXs.

Weighted Sum (WS)
Theweight sumobject in Mullet will accept two PP ob-

jects and output a PP object. The circuit forweight sumis
dynamically generated in CAST according to the width and
weight of the two inputs. The inputs will be appropriately
sign extended and aligned before they are summed.

Compression Tree
The most simple compressor is a3 : 1 compressor im-

plemented as a full adder. There are different ways to im-
plement the full adder which lead to different area and delay
models. In [10], the full adder delays are modeled as an
XOR gate count where the carry out delay is 1 XOR gate
delay and the sum output is 2 XOR gate delays. In most
FPGA architectures, this is not true due to their implemen-
tation using a 4-input LUT and fast carry logic.

We can build larger compressors by interconnecting stan-
dard2 : 1 and3 : 1 compressors. CAST will make use
of LUT4 and F5 primitives in the FPGA to optimize area
and speed when implementating the high ratio compressors.
The delay model for these compressors is determined by the
number of levels of LUT required.

The original TDM algorithm was proposed for unsigned
multiplication. We modified the algorithm to accept signed
numbers.

Multplier Generator
The multiplier generator accepts a set of configuration

parameters as input and generate a multiplier. The PPG can
be one of AND, MBE and HWM. The PPA can be either
WS or TDM. The choices of PPG and PPA are independent.

To implement the TDM algorithm, the system is able to
obtain delay and other information from the circuit objects
in the CAST system. Every object has its own delay model
which is used to compute the maximum delay at each output.
These delays are then propagated through the connections.

4. RESULTS

Multiplier performance for different input size using differ-
ent schemes are shown Figure 4. All results are collected
with the tools set to the highest optimization effort. The
generated results were compared with the Xilinx CoreGen
system as well as a multiplier directly generated using the
“*” operator in XST on a Xilinx XC2V6000-6 FPGA. The
correctness of a multiplier can be verified both by simulation
in CAST by compiling the program with a C++ compiler
and/or VHDL simulation. In the verification process, we ex-
haustively test all the possible inputs for a8×8 multiplier for
all possible configurations by comparing the results against



 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  10  20  30  40  50  60  70

S
pe

ed
 (

ns
) 

MUL width (bit)

CAST (w/ HWM)
XST (w/ HWM)

CorGen (w/ HWM)
CAST (w/o HWM)

XST (w/o HWM)
CorGen (w/o HWM)

(a) MUL Speed.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  10  20  30  40  50  60  70

A
re

a 
(L

U
T

s)
 

MUL width (bit)

CAST (w/ HWM)
XST (w/ HWM)

CorGen (w/ HWM)
CAST (w/o HWM)

XST (w/o HWM)
CorGen (w/o HWM)

(b) MUL Area.

Fig. 4. Performance of differnet multiplier schemes for dif-
ferent input sizes.

software multiplications. Random input vectors were used
to verify larger multipliers. In this section we present exper-
imental results based on Xilinx FPGA devices. The VHDL
codes generated by Mullet were first synthesised using the
Xilinx Synthesis Tools (XST) and then implemented using
the ISE 6.2i tools.

The delays are measured between input and output regis-
ters of the multipliers. The configurations shown in Figure 4
are optimized for speed. As shown in the table, the perfor-
mance of the generated circuit is better then those from XST
and CoreGen when the input width is large. In our experi-
ments, circuits using TDM3 performed better for multipliers
larger than 40 bits because of the reduced number of logic
levels. The Xilinx CoreGen can only accept input up to 64
bits so the last two entries for CoreGen are missing. For
the 19 bit multiplier, our tool uses 1 MULT18X18 HWM
while the other two both use 4 HWMs. The resulting speed
is faster at the expense of requiring more LUTs.

In practice, we often need to find out what is the best im-
plementation scheme for a given sized multiplier. The user
may wish to optimize for speed, area or both. Using Mullet
a user can easily explore tradeoffs associated with different
schemes. A 52x52 bit muliplier is used as an example and
the results agree with our expectation for different configu-
rations.

5. CONCLUSION

In this paper, we presented a system that can be used to gen-
erate different parallel multiplier structures for a reconfig-
urable platform. It is shown that the we can combine the ad-
vantages from different algorithms and obtain an improved
result, a task which is very difficult without automatic de-
sign tools.

The MG system has built in area and speed estimation
functions to evaluate the generated circuits. These features
allow different search methods to optimize multiplier cir-
cuits automatically. Even without the searching algorithms,
it can be used to explore the complete design space in an
efficient way.

6. REFERENCES

[1] I. Koren, Computer Arithmetic Algorithms, 2nd ed. A.K.
Peters, 2002.

[2] M.D. Ercegovac and T. Lang,Digital Arithmetic. Morgan
Kaufmann, 2004.

[3] Virtex-II Platform FPGAs: Complete Data Sheet, Xilinx,
Inc., 2004, version 3.3.

[4] S. Waser and M. J. Flynn,Introduction to arithmetic for dig-
ital systems designers. Holt, Rinehart and Winston, 1982.

[5] M. J. Flynn,Advanced computer arithmetic design. Wiley,
2001.

[6] A. D. Booth, “A signed binary multiplication technique,”
Quart. J. Mechanical and Applied Math., vol. 4, pp. 235–240,
1951.

[7] O. L. MacSorley, “High speed arithmetic in binary comput-
ers,”Proc. IRE, vol. 49, pp. 67–91, 1961.

[8] W.-C. Yeh and C.-W. Jen, “High-speed booth encoded par-
allel multiplier design,” IEEE Transactions on Computers,
vol. 49, pp. 692–701, 2000.

[9] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for
speed optimized partial product reduction and generation of
fast parallel multipliers using an algorithmic approach,”IEEE
Trans. Comput., vol. 45, no. 3, pp. 294–306, 1996.

[10] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi,
“Optimal circuits for parallel multipliers,”IEEE Trans. Com-
put., vol. 47, no. 3, pp. 273–285, 1998.


