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Abstract—This paper introduces a methodology to optimize
coarse-grained floating point units (FPUs) in a hybrid field-pro-
grammable gate array (FPGA), where the FPU consists of a
number of interconnected floating point adders/subtracters (FAs),
multipliers (FMs), and wordblocks (WBs). The wordblocks in-
clude registers and lookup tables (LUTs) which can implement
fixed point operations efficiently. We employ common subgraph
extraction to determine the best mix of blocks within an FPU
and study the area, speed and utilization tradeoff over a set of
floating point benchmark circuits. We then explore the system
impact of FPU density and flexibility in terms of area, speed, and
routing resources. Finally, we derive an optimized coarse-grained
FPU by considering both architectural and system-level issues.
This proposed methodology can be used to evaluate a variety of
FPU architecture optimizations. The results for the selected FPU
architecture optimization show that although high density FPUs
are slower, they have the advantages of improved area, area-delay
product, and throughput.

Index Terms—Common subgraph extraction, field-pro-
grammable gate array (FPGA), floating point (FP).

I. INTRODUCTION

I N MODERN field-programmable gate arrays (FPGAs),
coarse-grained elements such as memories and digital

signal processors (DSPs) are embedded within a fine-grained
programmable fabric. These fixed-functionality elements pro-
vide a high-throughput and cost-effective platform to develop
applications [1].

Although coarse-grained units are more efficient than
fine-grained units for implementing specific word-level opera-
tions, they are less flexible, and only benefit applications that
can make use of them. Given this limitation, the optimization
of coarse-grained elements becomes a critical issue. The com-
putational speed of domain-specific applications can be further
increased through additional embedded elements. For example,
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an application which demands high performance floating point
(FP) computation can achieve better speed and density by
incorporating embedded floating point units (FPUs) [2]–[4].
In the FP application domain, an FPGA can provide higher
data throughput by using more and faster FPUs [5], [6]. In this
work, an FPU is a number of fixed point wordblocks, floating
point adders/subtracters (FAs), and floating point multipliers
(FMs) [3]. Wordblocks (WBs) are used for general fixed point
arithmetic and logical operations. Hard WBs, FAs and FMs
are composed from non-programmable elements, resulting in a
more compact block with higher speed, but less flexibility than
fine-grained logic.

A method to optimize the architecture of a comprehensive
set of FPUs is proposed. The number and interconnection of
primitives are determined using common subgraph extraction
to find efficient arithmetic units over a set of benchmark circuits
[7]. Specifically, the contributions of this paper are as follows:

1) a methodology to optimize a floating point hybrid FPGA
by considering both the internal architecture of FPUs and
types of FPUs incorporated into the system;

2) a study of FPU architectures over a set of FP benchmark
circuits;

3) a quantitative system-level analysis of resource trade-offs
in FP hard cores;

4) an analysis of the benefits of merging different types of
FPUs into a larger coarse-grained FPU.

A preliminary version of this work was presented in [8]. This
paper revises the area and timing results by using the latest
version of Synopsys Design Complier and further considers
optimization by merging different types of FPUs into a larger
coarse-grained FPU. This serves to reduce the number of dis-
tinct types of FPUs in the system, resulting in fewer constraints
on the FPU placement and routing. We also discuss the data
throughput of different systems in this paper.

II. BACKGROUND

An FPGA is an array of fine-grained configurable logic
blocks interconnected in a hierarchical fashion. Commercial
FPGAs contain coarse-grained blocks such as memories and
multipliers for commonly used primitives [9] to improve effi-
cient for specific functions. However, FPGAs have been shown
to be approximately 20 times larger and 4 times slower than
application-specific integrated circuits (ASICs) [1]. In order
to reduce this gap, considerable research has been focused on
identifying more flexible and efficient coarse-grained blocks,
particularly for specialized application domains such as floating
point computations. It is because implementing FP operations
in fine-grained FPGA consumes a large amount of resources
and a number of approaches to optimize FP operations in
FPGAs have been proposed.

1063-8210/$26.00 © 2011 IEEE
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Fig. 1. Hybrid FPGA: EBs are surrounded by grid-based CLBs.

Our previous work [7] used common subgraph extraction to
identify subcircuits which could be implemented as fused-arith-
metic units to improve speed and area. Cevrero et al. [10] ob-
served a common pattern for multi-input addition and intro-
duced the field programmable compressor tree (FPCT) based on
this pattern as an alternative to DSP blocks. The FPCT can per-
form DSP function in conjunction with a small amount of FPGA
general logic, but was limited to fixed point. This paper employs
a similar technique to determine FP common subgraphs and we
focus on system-level tradeoffs.

Pipelined FP stages in custom computing machines have been
studied and optimized using existing fine-grained resources
[11]. However, the density and speed are poor compared with
an ASIC. Langhammer’s work on fused FP datapath synthesis
for existing FPGAs reduces the logic resources and latency by
sharing the normalization of different FP operators [5], [6],
[12]. The FloPoCo compiler [13] generates a custom pipeline
to optimize FP operators. Beauchamp et al. [2] introduced
embedded variable length shifters in the FPGA fabric and
added a 4:1 multiplexer to the cluster to reduce area and delay.
A domain-specific hybrid FPGA architecture with embedded
FPUs was presented in [3]. This architecture achieved an 18
times area reduction compared with a homogeneous FPGA.
These studies only considered a particular FPU architecture,
and did not optimize the combination of WBs, FAs, and FMs.
This paper directly addresses this issue.

III. FRAMEWORK

A. Hybrid FPGA

A hybrid FPGA consists of coarse-grained and fine-grained
components, which are connected by routing tracks. Our fine-
grained fabric consists of an array of identical configurable logic
blocks (CLBs), each containing basic logic elements (BLEs).
Each BLE contains -LUTs, flip flops (FFs), support for fast
carry chains, internal multiplexers and XOR gates. This archi-
tecture is similar to the Xilinx Virtex II slice [9]. The coarse-
grained embedded blocks (EBs), such as memories and multi-
pliers, are surrounded by CLBs.

An example of our hybrid FPGA showed in Fig. 1 embeds
four EBs are positioned tightly in the center, each taking the
place of 3 3 array of tiles and surrounded by CLBs. They are
connected by uniform width vertical and horizontal wires. The
channel contains parallel routing tracks of segment length

and is connected to neighboring CLBs or EBs using

a connection box. A switch box is located at the intersection
of each segment channel and offers each incoming wire the
ability to connect to three other wire segments [14].
We use the subset switch box (disjoint switch box). All CLBs,
EBs and I/O pads are fully connected to connection boxes, i.e.,

, and [14]. In addi-
tion, since the programmable routing resources consume about
70% of the area in a die [1], we add 70% extra area to the
coarse-grained block for the vertical, horizontal routing tracks
and switches. In [15], the area of the routing switches in the
coarse-grained block reduces routing area and does not affect
the area of block when is less than 33 for 0.13- m process.
We assume that eight-metal layer process technology is used.

Based on the physical die area and photomicrograph of a
Virtex II device described in [16], we estimate that 60% of the
total die is used for logic blocks. Our area model uses a featue
size of 0.15- m and assumes that each CLB in our fine-grained
fabric has the same area as the Virtex II CLB (10 912 m ).
Each CLB has two 4-LUTs , 13 input pins, 5 output
pins, and the maximum combinational delay of 0.45 ns.

We estimate the corresponding resistances, capacitances and
intrinsic delay of a tri-state buffer via SPICE simulations. We
also estimate the area of the tri-state buffer with 5 times min-
imum driving strength as being 34.5 times the minimum tran-
sistor area, and the wire width and spacing as being 1.5 times
the width of a minimum transistor. We use a segment length
of 4 which gives a good area-delay product [14]. Finally, we es-
timate the routing area of our architecture using the same model
as [14]. This involves summing the area of multiplexers and
tri-state buffers used in the circuit.

B. Coarse-Grained Block

A coarse-grained FPU is composed of FAs, FMs, and WBs.
The FAs and FMs are double precision (64 bit) and fully IEEE
754 compatible including all four rounding modes, denor-
malised numbers and status signals [17].

As described in [18], each WB contains identical bitblocks,
each consisting of two 4-input LUTs and a reconfigurable reg-
ister. The value of depends on the bit-width of the FPU. Bit-
blocks within a wordblock are all controlled by the same set of
configuration bits, which perform the same function. A word-
block can efficiently implement operations such as fixed point
addition and multiplexing. Therefore, some bit-level operations
in FP primitives can be supported inside the FPU, to reduce the
need for communication between the FPU and the fine-grained
fabric. Chong et al. [4] suggested a similar idea of including
fixed point units in an FPU, but with a different architecture. In
our previous work [3], WBs, FAs, and FMs are connected using
a local bus. This avoids using the fine-grained routing resources
of the FPGA for connections that can be implemented inside the
FPU, see Fig. 2.

C. Interface

Coarse-grained blocks are able to connect to fine-grained re-
sources in various ways. Coarse-grained blocks are usually large
and have high I/O density, resulting in a disruption in the routing
fabric, similar to that of MegaRAM blocks in the Altera Stratix
III device [19]. Our previous work [15], [20] shows that the
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Fig. 2. Connecting WBs, FAs, and FMs into different coarse-grained FPUs.

Fig. 3. Common subgraph extraction for an FP applications.

traditional column-based hybrid FPGA architecture is not par-
ticularly suitable for large coarse-grained blocks and concludes
that coarse-grained blocks should be: 1) square in aspect ratio;
2) closely packed together; 3) positioned near the center of the
FPGA; and 4) have I/O pins arranged on all four sides of the
block. The interface between coarse-grained blocks and fine-
grained blocks in this paper follows these recommendations.

IV. FPU OPTIMIZATIONS AND METHODOLOGY

This section considers three types of optimizations: the in-
ternal structure of the FPU, optimizations for density and flexi-
bility, and the merging of FPUs into larger composite structures.
The techniques described here are not restricted to our specific
architecture; they can be extended to optimize the other FPU ar-
chitecture such as that in [4].

A. Internal Optimization of FPUs

As described in Section III, our assumed FPU consists of
floating point adders and multipliers (FAs and FMs) as well as
fixed point coarse-grained WBs. The first optimization we de-
scribe is the optimization of the exact number of each type of
subunit within each FPU, as well as the pattern in which these
subunits are connected. Fig. 2 shows an example of two different
potential FPU architectures with different internal structures.

To derive candidate FPU structures, we employ common sub-
graph extraction. In this methodology, we systematically ana-
lyze a set of benchmarks, and extract patterns of FP operations
that commonly appear in these circuits. Fig. 3 is an example of a
common subgraph of two circuits (dscg and bfly benchmarks).
A single unit which combines the common FP operations can
be extracted, see Fig. 3(c).

A unique feature of our approach is the manner in which
we handle fixed point operations using wordblocks in the FPU.
Thus, creation of the FPU requires considering both fixed point
and floating point functions in the application circuits. Our ap-
proach is to include a multiplexer to the input of the FA or FM
in the common subgraph when there is a fixed point operation

Fig. 4. Common subgraph extraction design flow.

Fig. 5. Flow of the selection of (a) the highest density FPUs and (b) the highest
flexibility FPUs in hybrid FPGAs.

such as FF, XOR, and AND connecting to the FA or FM in one
of the analyzed benchmarks. This multiplexer allows selecting
internal signal from WBs implementing a fixed point opera-
tion, internal signal from FM or FA implementing a FP oper-
ation, or external signal. The combination of fixed point WBs
with FAs and FBs leads to more efficient circuit implementions,
which reduces the slow communication between the FPU and
the fine-grained fabric.

In order to evaluate candidate FPU architectures, we employ
the flow in Fig. 4 to obtain area and timing estimates for each
candidate. Benchmark circuits are written in Verilog. ODIN [21]
is used to parse and flatten the circuits. The flattened netlist is
then fed into a maximum common subgraph (MCS) generation
stage to extract the common subgraphs over a set of circuits,
as described in Section V. We describe the coarse-grained FPU
in another Verilog file. The FPU is then synthesized using the
Synopsys Design Complier V-2008.09 and a 0.13- m process.
We obtain the area and delay of the FPU and use this information
to evaluate its performance using VPH, described later.

B. System-Level Optimizations

The experiments in Section V involve two candidate FPU ar-
chitectures: one optimized for density and one optimized for
flexibility, see Fig. 5.

The first FPU we consider is one which has been optimized
for overall density. An FPU with more computational elements
achieves a greater reduction in area since connections between
components in the FPU can be made locally. However, larger
blocks may require more routing resources for connections to
fine-grained blocks, and may lead to a reduction in flexibility
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Fig. 6. Merging graph15 and graph26 into a larger FPU.

since it is difficult to reuse them in other applications. As shown
in Fig. 5(a), in our flow to construct an FPU optimized in this
way, we choose common subcircuits which are as large as pos-
sible. We then remove the selected subgraph pattern from each
benchmark circuit, and repeat until all subgraphs are visited.

The second FPU we consider is one optimized for overall
flexibility. As shown in Fig. 5(b), the difference between this
flow and the previous one is that when we optimize for overall
flexibility, we choose common subcircuits which appear in as
many user benchmark circuits as possible.

These two candidate FPUs represent two extremes. In
Section V, we present results only for these two extremes.
However, clearly, there are other candidates that can be devel-
oped by combining the two optimization goals, and this is an
interesting area for future work.

C. Optimization by Merging FPUs

The final type of optimization we consider is the merging
of two different types of FPUs into one composite FPU. The
more distinct types of FPUs exist in an FPGA, the more place-
ment constraints the architecture imposes, since each subgraph
in the circuit may only be able to be implemented in one of the
FPU types. By combining FPUs into larger FPUs, these place-
ment constraints may be relaxed, leading to more efficient im-
plementations. Fig. 6 shows an example of merging graph15
and graph26 into a larger composite FPU (graph15 graph26).
This is similar to the approach of Quinnel et al. [22] who merged
FP multiply and addition to a fused multiply-add unit in the FPU
of the AMD processor. This architecture is 30% to 70% faster
than the original one.

In this work we do not consider routing or logic resource
sharing when merging FPUs into composite structures (except
for the clock pin). We expect sharing resources may lead to im-
proved efficiency; this is an interesting area for future work.

When merging FPUs, there are two important considera-
tions. First, merging may lead to reduced placement constraints,
leading to a reduction in the overall wirelength of the imple-
mented circuit. The position of various FPUs are fixed so only
the same FPU type can be swapped during the placement stage.
This leads to inflexible placement and may introduce long wires
between FPUs, see Fig. 7(a). Merging different FPU types into
a larger FPU may lead to a better placement and reduce the
wirelength. Fig. 7(b) shows an example of merging FPU1 and
FPU3. FPU1 3 can be swapped to optimize connections such
as and . becomes a short wire and the delay
of the circuit is reduced.

Fig. 7. Merging different types of FPUs can obtain better placement and reduce
wirelength. (a) FPU1 and FPU3 cannot be swapped to reduce the length of wires.
(b) Merging FPU1 and FPU3 can reduce the length of wires.

Fig. 8. Increase wirelength when merging FPUs. (a) Shorter cross FPU/CLB
wires. (b) Longer cross FPU/CLB wires, more long self-connected wires.

Fig. 9. Design flow for common subgraph EBs using VPH.

Second, a larger FPU will require more chip area, and may
lead to an increase in overall wirelength. This is illustrated in
Fig. 8. The original between CLB and FPU1, and
between FPU1 and FPU2 are short, see Fig. 8(a). In Fig. 8(b),
the width and height of the merged FPU1 2 is larger, leading to
longer nets and hence increased delay.

D. Evaluation Methodology

In Section V, we evaluate these optimizations in the context
of a complete FPGA. We use the VPH tool [23] for place and
route. VPH is a modified version of the VPR tool that supports
EBs, memories, multipliers, carry chains, and user constraints.
The tool flow is illustrated in Fig. 9. Circuits described in VHDL
are synthesized using Synplify Premier 9.0. VPHpack packs and
clusters LUTs and registers into CLBs. The area, timing and
position of EBs are specified in a user constraint file. The ar-
chitecture file contains the architectural information including
the delay of the LUTs and registers. VPH performs placement,
routing and estimates the area and delay for each circuit.
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TABLE I
COMMON SUBGRAPH STRUCTURE OCCURRED IN BENCHMARK CIRCUITS (WBX6 MEANS THERE ARE SIX WBS CONNECTED SERIALLY)

V. EVALUATION

This section introduces the FP benchmarks used; evaluates
the area and delay impact of internal and system-level optimiza-
tions of coarse-grained FPUs based on common subgraphs; and
finally optimizes the systems by merging different FPUs into a
larger FPU. We assume that the channel width is 1.2 times the
minimum channel width required to implement each circuit in
all experiments.

A. FP Benchmark Circuits

To explore the design of a hybrid FPGA based on common
subgraph extraction and synthesis, a set of FP designs are used
as benchmark circuits. They are: 1) , a datapath of four
digital sine-cosine generators; 2) , the basic computation
of fast Fourier transform: where inputs and
output are complex numbers; 3) , four 4-tap finite impulse
response filters; 4) , four circuits to solve ordinary differen-
tial equations; 5) , four 3 3 matrix multipliers; 6) ,
a circuit to compute Monte Carlo simulations of interest rate
model derivatives; 7) , a circuit containing 5 FAs and 4
FMs; and 8) a circuit containing 25 FAs and 25 FMs.
and are two synthetic benchmark circuits generated by a
synthetic benchmark circuit generator. These eight double pre-
cision FP benchmark circuits are not efficiently implemented in
fine-grained FPGAs, since the FP computation requires a great
deal of fine-grained resources.

B. FPU Architecture Optimization

We determine the common subgraphs of FP in the
benchmark circuits. The common subgraphs are shown
in Table I, and are found using the common subgraph
extraction technique described in Section IV. This tech-
nique can enumerate all possible common subgraphs;
we only include subgraphs with two or more nodes.
graph2,3,4,6,9,10,23,24,25,27,28,30,31,32,33,34,35,39,40,41
occur in two benchmark circuits; graph5,8,13,22,36 occur in
three benchmark circuits; graph14,16,17,20,38 are common
in four benchmark circuits; graph1,7,18,21,26,37 are common
in five benchmark circuits; graph11,19,29 are used in six
benchmark circuits; and graph12,15 are used in seven bench-
mark circuits. Since our standard cell library is for a 0.13- m
process and our fine-grained fabric modelled in VPH uses a
0.15- m process, normalized area (area/feature size squared) is
used. The equivalent area of the FPU in CLB is rounded to an
integer value. The minimum channel width is larger than 33,
therefore no additional area for switches inside FPU is required
as suggested in [15].

Table II shows the frequency, normalized area, delay, number
of input/outputs, and latency of the common subgraphs selected
via system-level optimization. Embedding more FAs and FMs
in an FPU can achieve an area reduction compared to those FPU
with less FAs and FMs. It is because all the elements are com-
pacted into a single unit.
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TABLE II
STATISTICS FOR SELECTED SUBGRAPHS

TABLE III
UTILIZATION RATE OF SUBCIRCUITS IN THE THREE HYBRID FPGAS

C. System-Level Optimization

We evaluate the impact of embedding the new FPUs into a hy-
brid FPGA. Based on the optimization parameters in Section IV,
the delay, area and routing resources of purely FA/FM FPGA,
and mixture of subcircuits are examined. In the purely FA/FM
FPGA, 25 FA, and 25 FM are used. We select two systems based
on density and flexibility of FPU which are compared to the
purely FA/FM FPGA. These two architectures are the extreme
cases so the boundaries of performance can be explored.

1) Density: The architecture optimized for density is con-
structed by creating an FPU that contains as many FAs, FMs,
and WBs, as possible. For example, graph41 has 11 nodes that
are a combination of FAs and FMs, contains most computation
elements among subgraphs in Table II. Since the density and
area reduction of this subcircuit is greatest compared to having
separate FA, FM, and WB, this set of subcircuits may be the best
choice to reduce the area of the hybrid FPGA. The selection is
based on the scheme in Fig. 5(a).

We choose 7 types of FPUs: graph41, graph20, graph37,
graph12, graph26, FM, and FA as subcircuits to embed in the
hybrid FPGA (FPGA_41_20_37_12_26).

2) Flexibility of FPU: If we can reuse all the subcircuits
for all applications, the area of the hybrid FPGA may be re-
duced. We select a set of subcircuits which have highest occur-
rence rate in the benchmark circuits from Table II, based on the
flow in Fig. 5(b). graph12 has the highest occurrence rate (16
times) among all the subgraphs. We choose five types of FPUs:
graph12, graph15, graph26, FM, and FA to embed in the hy-
brid FPGA (FPGA_12_15_26).

Fig. 10. Delay and average routing area using different types of FPUs.

From the three hybrid FPGAs we have selected: 1)
Purely FA/FM FPGA; 2) FPGA_12_15_26; and 3)
FPGA_41_20_37_12_26, we examine their impact of area
and delay on the applications. The utilization rate of the sub-
circuits in each hybrid FPGA for benchmark circuits is shown
in Table III. The two selection methods are greedy, and do not
consider any connections of the chosen subgraphs.

3) Delay Impact: Fig. 10 shows that a purely FA/FM hybrid
FPGA achieves the highest speed. The delay of purely FA/FM
FPGA is 20.1% and 23% less than FPGA_12_15_26 and
FPGA_41_20_37_12_26, respectively. We have found that
embedding more coarse-grained FPUs types causes a decrease
in speed. The critical path is dominated by the connection
between two FPUs. This path can only be optimized by moving
the FPUs close together. Since the various FPUs have different
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Fig. 11. Area-delay product of different types of FPGA.

architectures, they cannot be swapped to get better placement.
For example, we cannot swap graph41 and graph20, but two
graph12’s can be swapped. The purely FA/FM system has the
smallest number of distinct types of subcircuits. Therefore, due
to the reduced placement constraints, FPUs in a purely FA/FM
system have more freedom to be moved. This can be reflected
by the wirelength, where the wirelength of purely FA/FM is
6.7% shorter than FPGA_12_15_26 and 21% shorter than
FPGA_41_20_37_12_26.

4) Routing Area Impact: On average, the total routing area of
FPGA_41_20_37_12_26 and FPGA_12_15_26 are 27.9% and
23.5% less than the purely FA/FM FPGA as shown in Fig. 10.
In FPGA_41_20_37_12_26 and FPGA_12_15_26, most of the
connections are in the FPUs therefore they can use less routing
resources for interconnection. FPGA_41_20_37_12_26 is the
most compact and consumes less total CLBs (including the area
of FPUs). Therefore, it uses less total routing area.

From the above, different mixtures of coarse-grained subcir-
cuits can optimize different parameters in hybrid FPGAs. As a
result, we could use a suitable set of subcircuits to obtain a par-
ticular optimization goal.

5) Area-Delay Product Impact: We present the
overall area-delay product of the systems in Fig. 11.
FPGA_41_20_37_12_26 achieves the best area-delay product.
It is 2.2% and 6.4% better than FPGA_12_15_26 and purely
FA/FM FPGA, respectively. FPGA_41_20_37_12_26 is slower
than the other systems; it consumes less routing resources.
Overall, FPGA_41_20_37_12_26 is the best for both speed
and area. We believe that between the two extreme systems, the
lower density FPU should achieve higher speed while the less
flexible FPU should consume more routing area.

D. Optimization by Merging FPUs

As explained in Section IV, an FPGA with many distinct
types of FPUs may impose a large number of placement
constraints, which may lead to an increase in wirelength. We
evaluate the extent to which FPU merging may improve the
overall wirelength, and delay of circuits implemented on a
hybrid FPGA.

1) Merging Scheme: We merge the FPUs with similar
number of subcircuits in the FPGAs stated in Table III
which minimizes the waste of unused FPUs. For example,
in FPGA_41_20_37_12_26, graph37 occurs four times and
graph26 occurs three times. We merge them into a single FPU
graph26 graph37. We consider five different merge scheme

TABLE IV
DIFFERENT FPUS MERGED IN THE THREE FPGAS

TABLE V
STATISTIC OF THE MERGED FPUS IN THE FPGAS

for the evaluation. These schemes are denoted A, B, C, D,
and E in Table IV. The FPGA in scheme A contains smaller
FPUs while the FPGA in scheme E composes larger merged
FPUs. Table V shows the area, delay and the number of FPUs
embedded in the FPGAs. We examine the impact on area, delay
and wirelength of the merged FPUs in the hybrid FPGAs based
on the these FPU results. The five schemes were selected to
demonstrate the significant changes in performance. For ex-
ample in the pure FA/FM system, and
system have the same area and delay, therefore we do not show
those schemes in this paper.

2) Delay and Wirelength Impact: Fig. 12 shows there is a
maximum delay reduction in the five merge schemes. The delay
is the critical path after place and route, averaged over the eight
benchmarks. Merge scheme A is the original FPGA without any
merged FPUs. In scheme B, a purely FA/FM hybrid FPGA re-
duces delay by 3.1% and FPGA_41_20_37_12_26 reduces it
by 3.5%, while FPGA_12_15_26 achieves a 1.6% delay reduc-
tion. Further increases in the size of merged FPUs increases the
delay due changes in width and height of the merged
FPUs. Table VI shows the average wirelength and the maximum
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TABLE VI
AVERAGE WIRELENGTH OF THE THREE FPGAS IN DIFFERENT MERGE SCHEMES

Fig. 12. Delay and routing area of FPGAs using different merging methods.

Fig. 13. Area-delay product of FPGAs using different merging methods.

of the FPUs and merged FPUs. The wirelength gener-
ally increases with larger FPUs. When the of the merged
FPUs are shorter than the average wirelength, the speed can be
improved because of the both inter and intra-FPUs are short as
described in Fig. 7. Once the of the merged FPUs ex-
ceed the average wirelength, the inter-FPU wires are short, but
the intra-FPGA wires are long as shown in Fig. 8, causing a de-
crease in speed.

3) Area Impact: Fig. 12 shows the total routing area used in
each scheme. FPGA_41_20_37_12_26 has the smallest area.
Larger and more compact FPUs have higher I/O density as
shown in Table V. For example, FA and FM originally have 7.7
and 12.6 I/O pins per CLB length, respectively. The I/O density
of merged FPU is 13.43, which is 74% more than
FA and 6.6% more than FM. Therefore, large FPUs in scheme
B, C, D, and E require larger routing area.

4) Area-Delay Product Impact: Finally, Fig. 13 shows the
area-delay product of each scheme. The area-delay product of
scheme A and B are similar in all the three systems. Scheme

Fig. 14. Circuit diagram of one core of bfly.

B has an advantage in speed which can compensate the loss
in routing area. Scheme A is opposite to scheme B, which has
better area but is slower. Scheme C, D, and E include more com-
pact FPUs; the area gained in individual FPUs cannot compen-
sate the loss in speed and routing area. As a result, the larger
merged FPUs cause a worse area-delay product.

E. Throughput of FP Computation

Throughput of the FP computation is a major concern for de-
signing FP applications. We show that the high density system
FPGA_41_20_37_12_26 is 27.9% smaller than the others. We
can embed more FPUs in the high density system compared to
the other systems on an fixed-area FPGA. As a result, it can pro-
vide more FP operators for computation at the same time and
achieve higher data throughput. For example, one core of the
benchmark bfly (shown in Fig. 14) requires four FAs and four
FMs. The purely FA/FM FPGA can implement six bfly cores,
while FPGA_41_20_37_12_26 can implement eight bfly cores.
An application requires to compute more than eight bfly is pos-
sible to achieve about 33% higher data throughput by using high
density FPGA than using purely FA/FM FPGA.

VI. CONCLUSION

This paper proposes a novel methodology to determine
optimized coarse-grained FPUs in hybrid FPGAs, based on
common subgraph extraction. Floating point circuits are not
efficiently implemented in fine-grained FPGA and we have
demonstrated the impact of embedding multiple types of
FPUs on a hybrid FPGA on speed and area. We explore the
internal and system-level optimization of the FPU. The effect
of merging different coarse-grained types into larger FPUs
is also studied. We observe that: 1) the speed of the system
is the highest for implementations involving only FAs and
FMs; 2) higher density subgraphs produce greater reduction
on area; 3) they provide the best area-delay product; and 4)
merging of FPUs can improve the speed of hybrid FPGAs, but
results in consuming more area. Our research reveals that high
density FPUs contribute to high system performance and high
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data throughput. Future work includes generalizing our model
to support multiple types of embedded blocks for different
application domains.
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