
 

 

 

 

Abstract—Location tracking is being increasingly used across 
many applications. While GPS is the most widely used location 
tracking technology, it is unavailable in many environments such 
as indoors and underground. Local positioning systems (LPS) 
that use time of arrival based ranging can provide high accuracy 
location tracking for many applications. Tracking location using 
range measurements is a non-linear state estimation problem and 
the measurement noise is often non-Gaussian in environments 
where LPS are typically used. Hence a particle filter is an 
appropriate state estimator for location tracking in LPS. 

Particle filters are computationally complex and have a serial 
bottleneck that prevents straightforward parallel 
implementation. In this paper we present a parallel architecture 
for the particle filter that can be efficiently implemented in a field 
programmable gate array or a fixed-point digital signal 
processor. We show that processing can be divided into up to 
twenty parallel particle filters to massively increase the 
processing speed. Mixing between the filters is essential and we 
present a new algorithm for this that minimises computational 
complexity and memory bandwidth. Finally, for efficient 
hardware implementation fixed point arithmetic should be used 
and we empirically determine the required precision. 
 

Index Terms—Wireless Networks, Location Tracking, Time of 
Arrival, Particle filtering, FPGA, Hardware architecture. 

I. INTRODUCTION 

Location awareness is a key feature requirement in many 
applications. For example, high accuracy tracking of athletes 
in both outdoor and indoor sports allows sports scientists and 
coaches to develop new training and gaming strategies. 
Accurately tracking vehicles and personnel in underground 
mines improves the automation and safety of the mine. 

The Global Positioning System (GPS) is the most widely 
used localisation system primarily due to its global coverage 
and free access. However, satellite based positioning systems 
cannot provide tracking underground and in most indoor areas, 
hence there is a need for Local Positioning Systems (LPS). 
There are a number of technologies that have been used for a 
LPS, and time of arrival (TOA) based tracking is widely 
agreed to provide the most accurate tracking [7]. 

A TOA-based LPS typically consists of two types of nodes: 
anchor nodes, whose locations are assumed known a priori; 
and mobile nodes, whose locations are required to be 
estimated. The range (or pseudo-range) between nodes is 
calculated based on the measured TOA of radio signals 
transmitted between the nodes. When a mobile node has range 

measurements to multiple anchor nodes (at least three for two-
dimensional localisation) the location of the mobile node can 
be calculated, and temporal tracking is typically used to 
reduce measurement noise. The use of a non-linear filter, such 
as a particle filter, is required to handle the non-Gaussian 
range error distribution encountered in indoor and other 
environments where multipath is encountered [8]. 

Particle filters are sequential Monte Carlo techniques that 
approximate the optimal Bayesian recursion using a point 
mass representation of the posterior densities [2]. This 
representation consists of a set of random samples (particles) 
and associated weights. Although the particle filter has been 
shown to perform well for state estimation problems, it 
typically requires a large number of particles, which leads to 
high computational cost, particularly in applications where a 
high update rate is required.  

Particle filters apply simple operations to a large number of 
particles (typically several hundreds or thousands), and most 
of these operations can be performed independently, hence 
parallel processing can be effectively exploited. Further these 
operations can typically be performed using low precision 
arithmetic. These properties make particle filters ideally suited 
for implementation in field programmable gate arrays 
(FPGA), multicore digital signal processors (DSP) and single 
instruction multiple data (SIMD) processors such as the Sony 
Cell. In particular, modern FPGA devices can have thousands 
of dedicated multiply units and can support trillions of integer 
operations per second in a single package at power levels 
similar to a single processor in a personal computer. 
Unfortunately there is a serial bottleneck in conventional 
particle filter algorithms. The goal of our work is to develop 
algorithms that overcome this bottleneck and allow efficient 
implementation on low precision parallel computing 
platforms. 

Parallel implementations of particle filters have been 
considered in the literature to improve execution of time [3–
6]. A typical implementation of the particle filter consists of 
sampling, weight update, and resampling steps, all of which 
are amenable to parallel implementation on their own. The 
weights, which approximate the probability measure, however, 
are normalised before executing the resampling step, which 
introduces a serial bottleneck in the particle filter. 

The literature on hardware implementation of particle filters 
primarily considers improvements to the resampling algorithm 
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to improve execution time, and architectures to reduce the 
memory requirement. For example, [5] considered 
modifications to the resampling algorithm that avoided 
normalisation of the weights. This, however, entails non-
deterministic and complicated data exchange patterns between 
processing elements and the control unit. In [3] architectures 
that reduce memory usage using a single dual-port memory 
were proposed, along with modifications to the resampling 
algorithm to improve the execution time. Effects of using 
finite precision implementation on performance were analysed 
in [4]. A parallel hardware implementation of particle filters 
was considered in [6], where distributed resampling 
algorithms with proportional and non-proportional allocation 
of particles were proposed. 

The parallel particle filter architecture that we consider in 
this paper is the same as the distributed non-proportional 
allocation technique of [6]. In this technique the particles are 
divided into a number of groups with each group consisting of 
a fixed number of particles and the standard operations of the 
particle filter are performed in each group independently. Note 
that if no data are exchanged between the groups, we cannot 
expect the performance of the overall particle filter to be any 
better than that of a single group. Whereas in [6] a 
deterministic data exchange technique was considered, we 
propose four different data exchange techniques and compare 
their performance. We also discuss implications of the 
different data exchange techniques for hardware 
implementation in terms of memory utilisation and execution 
time. 

The novel aspects of the work presented in this paper are: 
(i) explore the extent to which the tracking problem can be 
parallelized; (ii) develop a novel algorithm for mixing 
particles between the parallel filters that is efficient for fixed-
point DSP and FPGA implementation; and (iii) determine the 
minimum precision arithmetic required to minimize the 
implementation cost. 

This paper is organised as follows. Section II describes 
mobile node state estimation in wireless networks using the 
standard sequential importance sampling resampling particle 
filter and explains the serial bottleneck present in its 
implementation. Section III describes the architecture that we 
propose in this paper, along with simulation results comparing 
several mixing algorithms that we consider. Section IV 
discusses the hardware implementation issues, and Section V 
provides concluding remarks. 

II. SEQUENTIAL PARTICLE FILTER FOR STATE ESTIMATION OF 
A MOBILE NODE 

State estimation is formulated as an inference problem on 
an appropriately defined state-space model. The state 
transition model represents our prior knowledge of the motion 
of the mobile node and the measurement model relates the 
state of the node to the measurement. 

 

A. State Model 
The state vector for our application consists of the location 
and velocity of a mobile node, as we assume that the state 
transition of the mobile node is adequately represented by a 
single nearly constant velocity (NCV) model. Let 𝐱(k) =
[𝑥(𝑘),𝑦(𝑘), 𝑥̇(𝑘), 𝑦̇(𝑘)]𝑇 denote the state of the mobile node 
at time 𝑘, where (𝑥(𝑘),𝑦(𝑘)) denotes the position and 
( 𝑥̇(𝑘), 𝑦̇(𝑘)) denotes the velocity components. The state 
transition model can then be written as 

 𝐱(𝑘) = 𝐹𝐱(𝑘 − 1) + 𝐯(𝑘) (1) 
where 𝐹 is the state transition matrix and 𝐯(𝑘) is the process 
noise, which is assumed to be a zero-mean Gaussian random 
variable with covariance matrix 𝑄. For the NCV model we can 
write 𝐹 and 𝑄 as [11] 
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where T is the sample period and 𝑞 denotes the power spectral 
density of the process noise. 

B. Measurement Model 
A mobile node measures the range to all the anchor nodes 

that are within its communication range. The range 
measurement between the 𝑖th anchor node and the mobile node 
at x(k) is given by 
 𝑧𝑖(𝑘) = ℎ𝑖(𝐱(𝑘)) + 𝜐𝑖(𝑘). (3) 
The set of all measurements to anchor nodes can be written in 
vector form as 

 𝐳(𝑘) = ℎ�𝐱(𝑘)� + 𝛖(𝑘) (4) 

where (𝑥𝑖(𝑘),𝑦𝑖(𝑘)) is the location of the 𝑖th anchor node, 
𝜐𝑖(𝑘) denotes the measurement noise and the non-linear 
mapping function is given by 

 ℎ𝑖(𝐱(𝑘)) = �(𝑥(𝑘) − 𝑥𝑖)2 + (𝑦(𝑘) − 𝑦𝑖)2. (5) 
Note that the measurement equation is non-linear. Hence, 

even if the state transition model is linear, a non-linear 
filtering algorithm such as an extension of the Kalman filter 
(e.g., extended Kalman filter (EKF) and unscented Kalman 
filter (UKF)) or a particle filter is required for state estimation. 
The particle filter is the preferred choice since the range 
measurement noise can be non-Gaussian. This can be seen in 
Figure 1, which plots the outdoor and indoor range error 
distributions measured using our wireless ad-hoc system for 
positioning (WASP) [9]. The outdoor error distribution can be 
adequately modelled using a zero-mean Gaussian distribution 
(in this example, with mean 0.12 m), the indoor distribution is 
clearly non-Gaussian. This distribution is clearly asymmetric 
and biased. 
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Figure 1. Range measurement noise characteristics in (a) outdoor and 
(b) indoor environments. Outdoor error can be approximated well 
with a Gaussian distribution, whereas the indoor distribution is 
symmetric and biased. 

Like the Kalman filter, the EKF and UKF approximate the 
posterior density using a Gaussian distribution and propagate 
the first two moments over time. The particle filter on the 
other hand propagates samples of the posterior state 
distribution. Although we have found that the UKF can 
perform as well as the particle filter with outdoor data sets, its 
performance degraded severely with indoor data sets, where 
the performance of the particle filter is superior. Hence, from a 
system implementation perspective, particle filter is preferred 
for both outdoor and indoor tracking of nodes. 

C. Particle Filter for State Estimation 
Let {𝐱𝑖(𝑘 − 1),𝑤𝑖(𝑘 − 1)}𝑖=1𝑁  denote the 𝑁 particles and 

their corresponding weights that represent the posterior 
density at time 𝑘 − 1. With the availability of the range 
measurements at time 𝑘, the particle filter approximates the 
posterior density with a new set of particle-weight pairs  
{𝐱𝑖(𝑘),𝑤𝑖(𝑘)}𝑖=1𝑁 , through sampling, weight update, and 
resampling steps [2]. 
 

1)  Sampling 
New samples at time k are drawn from the importance 

density 𝑞(. ) according to 

 𝐱i(𝑘) ~ 𝑞(𝑥(𝑘)|𝑥𝑖(𝑘 − 1), 𝐳(1:𝑘)) (6) 
The importance density that is most often used is the prior 

because it is easy to implement and intuitive. That is 

 𝑞 �𝐱(𝑘)�𝐱𝑖(𝑘 − 1), 𝐳(1: 𝑘)� = 𝑝 �𝐱(𝑘)�𝐱𝑖(𝑘 − 1)� (7) 

2) Weight Update 
When the prior density is used as the posterior density it can 

be shown that the updated weight is given by 

 𝑤𝑖(𝑘) = 𝑤𝑖(𝑘 − 1)𝑝(𝐳(𝑘)|𝐱𝑖(𝑘)) (8) 

where 𝑝(𝐳(𝑘)|𝐱𝑖(𝑘)) is the measurement likelihood. Note that 
if resampling is used at every time step then the prior weights 
will all be equal to 1/𝑁, and hence, the updated weight is 
proportional to the likelihood. 

 
3) Resampling 

The sampling and weight update are repeated every time 
new measurements become available. After a few iterations 
the variance of the particles will increase such that there are 
only a few particles with significant weights. This 

phenomenon is referred to as sample degeneracy and will lead 
to the divergence of the particle filter. The objective of the 
resampling step is to remove the particles with insignificant 
weights and to generate a new particle set by concentrating on 
the particles with significant weights. 

In the resampling step new samples {𝐱𝑖∗(𝑘)}𝑖∗=1𝑁  are drawn 
from the newly proposed particles {𝐱𝑖(𝑘)}𝑖=1𝑁 . New samples 
are drawn randomly according to their probabilities 𝑃𝑖  given 
by 

 ( ) ( )
( )1

i
i

N l
l

w k
P k

w k
=

=
∑

 (9) 

The resampled particles are independent and identically 
distributed samples of a discrete density and hence their 
weights are set to 𝑤𝑖(𝑘) = 1/𝑁. 

III. PARALLEL PARTICLE FILTER 
The particle filter is often implemented as a sequential 

process. A parallel implementation of the particle filter can 
achieve significant improvement in execution time. Although 
the sampling and weight update states can be implemented in 
parallel, in order to calculate the probabilities of the particles 
used in the resampling step, calculated according to (9), 
requires the weights of all the particles to be known. This 
creates a serial bottleneck where each parallel path must wait 
for the others to complete before the resampling step can 
begin. In this section we look at different ways to overcome 
this serial bottleneck. Note that the techniques that we look at 
are approximations to the original serial implementation and 
the objective is to find a parallel implementation that is 
efficient in memory usage and complexity, while not 
sacrificing tracking performance. 

A. Structure of the Parallel Implementation 
In the parallel particle filter implementation we consider 

particles are divided in to 𝑀 groups with each consisting 𝑁/𝑀 
particles. The sampling, weight update, and resampling steps 
for each group are implemented as in the standard serial 
implementation of the particle filter. One can think of just 
combining the individual state estimates of different groups to 
form a combined state estimate. The performance of such a 
filter cannot be any better than that obtained by running a 
single filter with 𝑁/𝑀 particles. 

This necessitates a mixing step, where particles from 
different groups are mixed prior to processing the 
measurements from the next time step. The mixing step can be 
performed before or after the resampling step in each group 
and the final estimate of the parallel particle filter is the 
combined estimate of all the groups after the mixing step. 
Although the particle filter running in each group still has the 
serial bottleneck, by reducing the number of particles by a 
factor of M the speed of each particle filter can be increased 
by the same factor M. It is important that the new step, mixing 
between groups, does not introduce a new serial bottleneck. 

We will now present four different mixing strategies in this 
section then compare their performance. 
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1) Full Random Mixing (FRM) 
In this case we as the name suggests the mixing is 

performed in a random order. After performing the resampling 
step in each group we generate a random permutation of the 
numbers between 1 and 𝑁 and swap the memory locations of 
all the 𝑁 particles according to the random permutation prior 
to processing the next set of measurements.  

This technique follows the spirit of the particle filter, i.e., 
operations are performed randomly. As a result the mixed 
particles will show good diversity and will lead to better 
performance. This is the most complex to implement in 
hardware. 
 

2) Lowest Weight Replacement (LWR) 
Mixing is implemented before the resampling step and uses 

the weights as a guide to perform mixing. After performing 
weight update, particles in each group are sorted according to 
their weights. The highest weighted particle in each group is 
then selected and the least weighted 𝑀 − 1 particles in each 
group are replaced by the highest weighted particle in the 
other 𝑀 − 1 groups. An example of LWR technique is shown 
in Figure 2. 

This technique requires additional processing to find the 
particle with the largest weight, but has the lowest memory 
bandwidth requirement of the proposed techniques. 
 

3) Deterministic Mixing (DM) 
Mixing is performed in a predetermined order after the 

resampling step, at which point all particles have equal weight. 
There are many ways in which DM can be done. In the 
technique we implemented each group is numbered 
sequentially and groups with consecutive numbers are 
considered adjacent. We also consider the last and first groups 
to be adjacent. Two particles from each group are swapped 
with the correspondingly numbered particles in the adjacent 
group. The DM technique that was implemented in the 
simulations is illustrated in Figure 3. 

This type of mixing is easy to implement due to its 
deterministic nature and it is easy to devise optimized 
hardware implementations. The memory bandwidth for each 
group is low and independent of the number of groups. 
 

4) Partial Random Mixing (PRM) 
This is similar to FRM, however to reduce memory 

bandwidth we only mix a randomly selected subset of particles 
from adjacent groups. This is performed after resampling. 
While enjoying simpler complexity compared to the full 
random mixing, this still provides benefits of randomness. 
 

B. Simulation Results 
We conducted a simulation study to compare the 

performance of the parallel particle filter implemented with 
the different mixing techniques considered. The benchmark 
performance was considered to be the one obtained using the 
standard serial implementation. 
 

 
Figure 2. Illustration of lowest weight replacement mixing. There are 
four groups of 50 particles each and the highest weighted particles 
from groups two to four replaces the lowest weighted three particles 
from group 1. 

 
Figure 3. Illustration of deterministic mixing. There are ten groups of 
50 particles each and two particles from a group are swapped with 
two particles in the adjacent group. First and last groups are assumed 
adjacent. 

In the scenario considered there were B=4 anchor nodes 
located at the edges of a 100×100 m square. A single mobile 
node was simulated whose initial position and velocity were 
set to (4, 3.5) m and (0.25, 0.15) m/s, respectively. The mobile 
node trajectory was generated using a NCV model with the 
power spectral density of the process noise set to 0.05 m2/s3. 
The range between the anchor nodes and the mobile node was 
determined at each time step and the measurement noise was 
generated from a zero-mean Gaussian distribution with 
standard deviation 0.5 m. The simulation duration was 80 s. 

A total of 500 particles were used in all implementations of 
the particle filter. Through experiments we found this is the 
minimum number of particles that is required in the standard 
serial implementation to provide non-diverging tracks of the 
mobile node. By using the minimum number of particles of 
the serial implementation, any degradation of the performance 
in the parallel implementations would immediately be 
observable. 

Figures 4-7 show the root mean square error (RMSE) of the 
position and velocity of the mobile node calculated over 50 
Monte Carlo runs for the four mixing techniques discussed in 
this section. These plots compare the performance of two 
parallel particle filter implementations with 10 and 20 groups 
with that of a non-parallel implementation (i.e. one group).  
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Figure 4. Full random mixing. 

  

 
Figure 5. Lowest weight replacement. 

 

 
Figure 6. Deterministic mixing. 

 
Figure 7. Partial random mixing. 

 
TABLE 1 

COMPARISON OF MIXING TECHNIQUES PER GROUP 
Technique Memory Accesses Extra Processing 

FRM 2N/M random numbers 
LWR M+1 largest number 
DM 8 - 

PRM 20 random numbers 

C. Analysis of Results 
The first important observation from the data is that it is 

possible to have up to 20 parallel filters and still provide good 
tracking performance, hence a speedup of almost twenty times 
can be achieved. 

Table 1 shows the number of memory accesses required for 
each technique, where for this data N = 500 and M has values 
10 and 20. The accesses are for each group, as an 
implementation will require a separate memory for each 
group. The least number of memory accesses is required by 
DM and the most by FRM. For high levels of parallelization 
LWR requires more memory accesses than PRM. 

From the results it is seen that DM has the worst 
performance, and FRM has the best performance, as expected 
from the amount of mixing performed. PRM generally 
performed better than LWR and does not require an extra 
processing step to find the largest number. Hence it is the 
preferred technique among other mixing strategies and was 
finally chosen to be evaluated in hardware. 

IV. FILTER IMPLEMENTATION  
The previous section described the mixing operation 

required between multiple particle filters. In this section we 
focus on the implementation of the particle filter in each 
group.  

A breakdown of the arithmetic operations required per 
iteration of a particle filter is given in Table 2, where N is the 
total number of particles, and B is the number of base stations. 
The weight update step is seen to dominate the computational 
complexity. 

1760



 

 

 

TABLE 2 
BREAKDOWN OF OPERATIONS OF EACH STEP IN PARTICLE FILTER 

Operations 
 
Step  

Add  
Subtract Multiply Divide Exp Sqrt Random 

numbers 

Sampling 6N 2N - - - 4N 

Weight 
 

4BN  2(B + 2)N N N BN - 

Resampling 3N - - - - N 

 
Besides the basic operations (add, subtract, multiply), the 

implementation also requires division (div), exponential (exp), 
and square root (sqrt). Standard integer div and sqrt algorithms 
are used since they are reasonably area efficient and produce 
exact results. The exponential function is computed using the 
CORDIC algorithm in rotation mode [1,4]. Moreover, four 
independent, Gaussian distributed random numbers are 
required per iteration. These can be efficiently generated in 
software or hardware using the Ziggurat method [10]. 

Although floating-point arithmetic is convenient for 
simulations on desktop computers, fixed-point designs are 
superior in terms of silicon area, power consumption, speed 
and latency. As our target implementation platforms are 
FPGAs and low-cost DSPs, fixed-point is preferred. 

A study of the effects of precision on accuracy was 
undertaken. All arithmetic operations were implemented using 
the MATLAB Fixed-Point Toolbox, with the exception of the 
exp function, which used CORDIC. The signal was 
represented as an integer and its word length was varied in 
order to observe the effects of finite precision. Simulations 
using a serial configuration of the particle filter at different 
precisions were made and a double-precision accumulator was 
used to calculate the position root mean square error (PRMSE) 
of the mobile node. The results are shown in Figure 8. It can 
be seen that 12-bit fractional precision has significant error 
whereas 18-bit or higher precision results in similar accuracy 
to a double precision implementation. 

V. CONCLUSIONS 
A good choice for tracking in wireless networks in GPS 

denied spaces is range based localization using a particle filter. 
Particle filters are computationally complex and have a serial 
bottleneck. In this paper we described a parallel particle filter 
design suitable for implementation in an FPGA or parallel 
fixed-point DSP. The serial bottleneck is overcome by 
dividing the particles between multiple particle filters 
operating in parallel, and performing a mixing operation 
between the filters at each time step. We showed that for 
tracking up to twenty parallel particle filters works well, 
hence, allowing a twenty-fold speedup. We evaluated four 
techniques for particle mixing and found that partial random 
mixing achieves good performance while significantly 
reducing memory bandwidth. 

We analysed the operations required in each particle filter 
and proposed a fixed point implementation that leads to 
efficient implementation with almost no loss in accuracy 
compared to a double precision floating point implementation. 

 
Figure 8. Effect of precision on location error (M=10). 

 
Our future work will focus on FPGA implementations, 

which combine the task-level parallelisation techniques 
described in this paper with other hardware optimisations such 
as pipelining, parallel arithmetic units and multi-ported 
memories. Other techniques to further reduce precision 
requirements while maintaining high accuracy will also be 
investigated. 
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