
High performance physical random number
generator

K.H. Tsoi, K.H. Leung and P.H.W. Leong

Abstract: A field programmable gate array (FPGA) -based implementation of a physical random
number generator (PRNG) is presented. The PRNG uses an alternating step generator construction
to decorrelate an oscillator-phase-noise-based physical random source. The resulting design can be
implemented completely in digital technology, requires no external components, is very small in
area, achieves very high throughput and has good statistical properties. The PRNG was
implemented on an FPGA device and tested using the NIST, Diehard and TestU01 random
number test suites.
1 Introduction

Random number generators (RNGs) are an important primi-
tive widely used in simulation and cryptography. A physical
random number generator (PRNG) derives its output from a
physical noise source and its output is non-deterministic in
nature. Given the importance of random number generation,
surprisingly few hardware implementations of PRNGs have
been reported. There are three commonly used techniques in
the literature, namely oscillator sampling, direct amplifica-
tion and discrete time chaos. In the oscillator sampling
approach, period variation (i.e. oscillator jitter) in a low-
frequency clock of low quality factor (Q) is exploited by
using it to sample a high-frequency clock. The direct ampli-
fication technique digitises thermal or shot noise, using an
amplifier and comparator. Finally, chaotic systems can be
used to produce PRNGs.
A high performance PRNG which uses a physical random

source to control two linear feedback shift registers (LFSRs)
in a manner similar to that of an alternating step generator
(ASG) stream cipher is proposed. This approach combines
some of the benefits of both approaches and achieves high
throughput, small area and good randomness properties.
The same approach could be applied to combine other
weak physical random number generators with a stream
or block cipher.
In 1984, Fairfield et al. [1] developed the first integrated

RNG based on oscillator phase noise. In the design, a high-
frequency oscillator was sampled using a low-frequency
oscillator. After removing duty cycle biases via a parity
filter, the flip flop output was fed into a LFSR-based
scrambler. The design generated 27 bps using a 1000 Hz
low-frequency clock. The Intel RNG is part of the Intel
8xx chipset starting with the Intel 810 and is implemented
in the Intel 82802 firmware hub device. It uses amplified
thermal noise to drive a voltage controlled oscillator
(VCO), and oscillator sampling is used to detect the phase
noise of the VCO to produce a digital random source [2].

The Institution of Engineering and Technology 2007

doi:10.1049/iet-cdt:20050173

Paper first received 30th October 2005 and in revised form 10th January 2007

The authors are with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, NT, Hong Kong

E-mail: phwl@cse.cuhk.edu.hk
IET Comput. Digit. Tech., 2007, 1, (4), pp. 349–352
We have previously reported an FPGA design which
employs oscillator sampling [3]. In this design, a
low-frequency RC oscillator was used to sample an
internal high-frequency clock. The design requires only
three external passive components to control the time
constant of the resistor-capacitor (RC) oscillator. Phase
noise in the RC oscillator produced randomised output
which was filtered through a parity filter. A disadvantage
of this approach is that the output rate is limited by the
speed of the RC oscillator and in order to pass the NIST
and Diehard tests, the maximum rate was 4.7 kbps. The
only other FPGA-based implementation was one by
Fischer and Drutarovsky [4] which used a variation of
oscillator sampling. Their design was based on the ran-
domness of jitter in an analogue phase locked loop
(PLL) and a decimator was used to ensure that at least
one sample affecting jitter was included in every output
data. The design was implemented on an Altera APEX
EP20K200-2X FPGA with a 33.3 MHz external clock.
With an 88.245 MHz internal clock, it can generate
69 kbps. For FPGAs such as the Altera APEX E and
APEX II devices which have internal PLLs, this approach
requires no external components. The disadvantage of
this approach is that few FPGAs have this feature.

PRNGs based on chaotic systems can lead to very compact
complementary metal oxide semiconductor (CMOS)
implementations. In 2001, Stojanovski et al. [5] implemented
an analog chaos-based RNG in a 0.8 mmCMOS process utilis-
ing switched current techniques. The estimated output bit rate
of this design was 1 Mbps. Gerosa et al. [6] also implemented
aRNGbased on a chaotic system.Their designwith a pipelined
ADC (analog-to-digital converter) occupied 2.2 mm2 silicon
area and the design can generate 8-bit data using a 20 MHz
clock. Petrie and Connelly combined oscillator sampling,
direct amplification and discrete time chaos to produce an
analog very large scale integration (VLSI) chip which was
robust to power supply noise and substrate signal coupling
[7]. Implemented in 2 mm CMOS, the chip could produce
random numbers at 1.4 Mbps. The design occupied an area
of 1.5 mm2 and dissipated 3.9 mW of power.

In comparison with the approaches described above, the
design presented in this paper, an output rate of 400 Mbps
can be achieved on a Xilinx XCV300-8 devices and the
design occupies approximately 130 Xilinx Virtex slices.
Furthermore, it can be implemented entirely in digital
technology with no external components.
349

The rest of the paper is organised as follows: the architec-
ture of the PRNG and its FPGA implementation are pre-
sented in Section 3. The performance of the design and
the quality of the resulting output is reported and evaluated
in Section 4. Conclusions are drawn in Section 5.

2 Background

2.1 Oscillator sampling based physical noise
source

Oscillator sampling based noise sources typically use a low-
frequency clock (Fl) with large phase noise to sample an
accurate high-frequency clock (Fh), producing an output
(Fr) as shown in Fig. 1. If the phase noise of Fl is of the
same order as the period of the high-frequency clock, an
output which is random is obtained [1]. However, since
the output rate of this approach is that of the low-frequency
clock, the output rate of this PRNG is determined by the fre-
quency of Fl. If the frequency of Fl is increased to improve
the output rate, the phase noise usually decreases, leading to
correlations in the output.
There are several factors which affect the randomness of

the output [1]. The first is that the duty cycle of Fh may not
be 50%. In this situation, Fr will have unequal probability of
being zero or one. An N-bit parity filter [1, 8] can be used to
deskew a non-uniform distribution. If the ratio of ones to
zeroes in the raw random bitstream is p:q then the prob-
ability that the parity will be one or zero is the sum of the
odd or even terms of the binomial expansion of (pþ q)N.
This sum can be evaluated to calculate the probability of
a one at the output of the parity filter and is 1=2[(p
þq)N þ (p� q)N]. Since pþ q ¼ 1, this expression
reduces to 1=2[1þ (p� q)N]. As N increases, this
expression tends to 0.5.
The second factor is the selection of clock frequency. The

period of the generated clock changes because of oscillator
phase noise. If the variation in Fl’s period is not large
enough, there will be correlation between bits and so the
value of the output can be predicted to some extent from
the previous values. Previous research has suggested that
the standard deviation of the period variation of Fl should
at least be 0.75 times the period of Fh to reduce bit to bit
correlation [1]. Increasing Fh and reducing Fl leads to
more randomness.
A third factor affecting the quality of the RNG is the

random source itself. As both periodic and aperiodic elec-
tromagnetic noise exists inside a computer system, there
may be correlation in the output sequence as the result of
coupling of periodic noise from the power supply, clocks,
crosstalk, thermal effects and so on. This issue is not
addressed in this work.

Fig. 1 Oscillator sampling using D-type flip-flop

Fig. 2 Alternating step generator
350
2.2 Alternating step generator

The ASG is constructed from three LFSRs as shown in
Fig. 2 [9, 10]. The binary output of the selection LFSR
(LFSRS in the figure) is used to select whether LFSR1 or
LFSR2 is clocked. The output of the ASG is the exclu-
sive-or (XOR) of the output of LFSR1 and LFSR2. The
characteristic polynomials of LFSR1 and LFSR2 are irredu-
cible and different. In addition, the greatest common divisor
of the periods of LFSR1 and LFSR2 should be equal to 1.

Several attacks on the ASG have been proposed. If the
connection polynomials of LFSR1 and LFSR2 are primitive
trinomials, the generator can be attacked using the linear
syndrome method [11]. In our design, a high Hamming
weight polynomial was chosen to prevent this attack.
Golic proposed an attack based on the edit distance [12].
This attack requires computing the edit distance for every
possible pair of initial states of LFSR1 and LFSR2 and is
hence not practical for large shift register lengths (approxi-
mately 127 in our case).

3 Architecture and implementation

In the proposed approach, a physical noise source, hereafter
called the oscillator noise source (ONS), is produced by
oscillator sampling as shown in Fig. 3. The high-frequency
clock, Fh, is generated using a three-inverter ring oscillator
implemented in a single Xilinx Virtex slice, whereas the
low-frequency oscillator input comes from the system
clock (133 MHz) in our tested configuration. These two
signals are combined using an edge-triggered D-type flip-
flop to produce a non-deterministic but correlated random
output. This output is used instead of the selection LFSR
of an ASG.

In order to achieve a high output rate, the ONS should
produce outputs at the same rate as the system clock. This
is normally derived from a crystal-controlled oscillator
and has low phase noise. Hence the system clock should
be connected to the clock input of the D type flip-flop (as
shown in Fig. 3), and a high-frequency oscillator connected
to the D input. For the FPGA implementation, a high-
frequency ring oscillator was used. Ring oscillators are
commonly used for PLLs, clock recovery circuits and fre-
quency synthesisers, but have high phase noise compared
with circuits employing passive resonant components
[13]. Thus they combine the advantages for this application

Fig. 3 Proposed PRNG circuit

Fig. 4 Xilinx virtex ring oscillator implementation
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007

of being implementable entirely within an FPGA with that
of high phase noise.
It is desirable to make the frequency of the ring oscillator

as high as possible in order to reduce the correlation result-
ing from sampling the ring oscillator with the system clock.
A naive implementation would require three lookup tables
(LUTs) and hence 1.5 Xilinx Virtex slices [14]. The
FPGA implementation used an additional two-input XOR
gate present in the Xilinx Virtex slice to reduce the
implementation to 1 Virtex slice as shown in Fig. 4. This
has the advantage of higher speed because wiring is
reduced and the XOR gate is faster than a LUT.
The LFSRs were implemented using the SRL16 [14]

feature of the Xilinx Virtex chip which enables a 1–16
stage shift register to be implemented in a single LUT.

3.1 Clock doubler

As discussed in Section 2, increasing the high-frequency
clock, Fh, improves the randomness of the ONS output. It
is possible to apply a clock doubler to the output of the
ring oscillator as shown in Fig. 5. The Poker test in the
NIST testsuite [15] was used to observe the effect of differ-
ent delay values for the clock doubler, and the results are
shown in Fig. 6. This test is quantitative and a low figure
implies better randomness. The Poker test is passed if the
result is between 1.03 and 57.4 [10]. As can be seen,
small and large values of the delay do not result in clock
doubling and the Poker test results are large. The test
results show a significant improvement for delay values of
approximately 2.5 ns as reported by the Xilinx timing ana-
lyser. Table 1 shows a comparison of the best Poker test
results with and without a clock doubler. Note that although
the clock doubler offers an improvement, the ONS output
does not pass the Poker test.

4 Results

An implementation of the PRNG was synthesised and
implemented using the Xilinx ISE 8.2i software. The
LFSRs were implemented as a chain of 16 bit shift register

Fig. 5 Clock doubler circuit

Fig. 6 Poker test results as a function of the clock doubler delay
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007
primitives (called SRL16 blocks) in the FPGA device to
achieve high performance and density. The FPGA platform
used was a Pilchard FPGA card [16], which employs the
synchronous dynamic random access memory (SDRAM)
bus instead of the peripheral component interconnect
(PCI) bus used in conventional FPGA boards. The FPGA
device used was a Xilinx Virtex XCV300E-8 device. The
LFSRs were chosen so as to have a random irreducible con-
nection polynomial of degrees 127 and 129 with approxi-
mately the same number of 0 and 1 coefficients [9, 10].
Several different polynomials were tested. The initial
states of the LFSRs were random numbers with approxi-
mately an equal number of 1’s and 0’s.

Table 2 summarises the resource utilisation and perform-
ance of the PRNG including a host interface to read back the
data. The high-frequency clock of the PRNG can operate at
over 400 MHz, but experiments described in this paper used
a 133 MHz clock so that the output sequence could be col-
lected via the SDRAM interface of the host computer. As
reported by the Xilinx timing analysis tool, the minimum
ring oscillator frequency was 800 MHz.

Since the ONS output of the clock doubler improves on
the randomness, results reported below are without the
clock doubler (i.e. the delay was set to 0). It was also veri-
fied that the implementation passes the below tests when an
appropriate delay for the clock doubler was added. This
increases confidence that the design will operate correctly
even if the delay of the clock doubler is set to an inappropri-
ate value.

4.1 NIST test suite

For the NIST test suite (version 1.5), all parameters were set
according to the recommendations in [17] and the test
sequences were 1 Mbit in size. The sample size, that is
test sequences used in the tests, was 100. Table 3 summar-
ises the NIST test results for the PRNG. The significance
level a was chosen to be the default of 0.01 (99% confi-
dence) so a test has passed if the p-value is larger than
this number. The pass rate is proportion of the 100 binary
sequences that passed the test. It can be seen that the
PRNG passes all NIST tests.

4.2 Diehard test suite

Although the Diehard test suite is one of the most compre-
hensive publically available sets of randomness tests, unfor-
tunately there are no well-defined pass criteria. Intel
assumed that the entire suite passes with a 95% confidence
interval for p-values between 0.0001 and 0.9999 [18], and
this method was used for our testing. The Diehard test
results are summarised in Table 4. If multiple p-values are

Table 1: Comparison of poker test results with and
without a clock doubler

Delay, ns Poker test result

0 1579.77

2.474 124.013

Table 2: Implementation summary (Xilinx XCV300E-8)

Design Period, ns Slices (% XCV300) BRAM (% XCV300)

PRNG 7.482 129 (4%) 4 (12%)
351

in the result, the worst case value is presented. The PRNG
random sequence passes the Diehard test.

4.3 TestU01 test suite

TestU01 [19] is a set of C libraries for RNG performance
evaluation. We developed programs to test our RNG
results using this library. The random data were stored in
a file and then read in as an external RNG source. The

Table 3: NIST RNG test result summary for the PRNG

Test p-value Pass rate

frequency 0.145326 0.9900

block frequency 0.657933 0.9700

cusum-forward 0.383827 1.0000

cusum-reverse 0.867692 1.0000

runs 0.289667 0.9700

long run 0.759756 0.9900

rank 0.514124 0.9900

FFT 0.779188 1.0000

aperiodic templates 0.657933 0.9600

periodic templates 0.289667 0.9900

universal 0.162606 1.0000

approximate entropy 0.924076 0.9900

random excursions 0.637119 0.9565

serial1 0.534146 1.0000

serial2 0.262249 1.0000

lempel Ziv 0.616305 0.9900

linear complexity 0.637119 1.0000

Table 4: Diehard RNG test result summary

Test p-value

birthday spacings 0.310619

overlapping 5-Permutation

(chisqr 66.743792)

0.994677

overlapping 5-Permutation

(chisqr 107.948832)

0.253086

binary rank (31 � 31) 0.155

binary rank (32 � 32) 0.080

binary rank (6 � 8) 0.051318

bitstream 0.008018

OPSO 0.996754

OQSO 0.011809

DNA 0.050285

steam count-the-1 0.066896

byte count-the-1 0.040476

Parking lot 0.921990

min. distance 0.496703

3D spheres 0.016095

squeeze 0.456598

overlapping sums 0.080856

runs up 0.053444

runs down 0.738119

craps 0.985720
352
RNG passes the Rabbit, Alphabit, SmallCrush and Crush
test batteries.

5 Conclusion

A new RNG was introduced. This circuit combines a phys-
ical random number source with a high speed stream cipher
to produce a physical noise source based RNG with small
area, high output rate and good statistical properties. This
RNG would be suitable for simulation and cryptographic
applications although for the latter, caution should be
taken since the design is new, and it may be possible to
attack the ASG construction given that the ONS is weakly
correlated.

6 References

1 Fairfield, R.C., Mortenson, R.L., and Coulthart, K.B.: ‘An LSI
random number generator (RNG)’. Advances in Cryptography:
Proc. of Crypto 84, 1984, (Springer-Verlag), pp. 203–230 LNCS
0196

2 Jun, B., and Kocher, P. White paper by Cryptographic Research Inc.,
‘The Intel random number generator’, 1999, ftp://download.intel.com/
design/security/rng/CRIwp.pdf

3 Tsoi, K., Leung, K., and Leong, P.: ‘Compact FPGA-based true and
pseudo random number generators’. Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), 2003,
pp. 51–61

4 Fischer, V., and Drutarovsky, M.: ‘True random number generator
embedded in reconfigurable hardware’. Proc. Cryptographic
Hardware and Embedded Systems Workshop (CHES), 2002,
pp. 415–430

5 Stojanovski, T., Pil, J., and Kocarev, L.: ‘Chaos-based random number
generators. Part II: practical realization’, IEEE Trans. Circuits Syst. –
I: Fundam. Theory Appl., 2001, 48, pp. 382–385

6 Gerosa, A., Bernardini, R., and Pietri, S.: ‘A fully integrated 8-bit,
20 MHz, truly random numbers generator, based on a chaotic
system’. SSMSD. 2001 Southwest Symp. on Mixed-Signal Design,
2001, pp. 87–92

7 Petrie, C., and Connelly, J.: ‘A noise-based IC random number
generator for applications in cryptography’, IEEE J. Solid-State
Circuits, 2000, 47, (5), pp. 615–621

8 Eastlake, D., Crocker, S., and Schiller, J.: ‘Randomness
recommendations for security’, Network Working Group, 1994 RFC
1750

9 Gunther, C.: ‘Alternating step generators controlled by de Bruijn
sequences’. Advances in Cryptology: Proc. Eurocrypt, 1988, vol. 87,
pp. 5–14

10 Menezes, A., van Oorschot, P., and Vanstone, S.: ‘Handbook of
applied cryptography’ (CRC Press, 1997)

11 Zheng, K., Yeng, C., and Rao, T.: ‘An improved linear syndrome
algorithm in cryptanalysis with applications’. Advances in
Cryptology: Crypto ’90, 1991 LNCS 537, pp. 34–47

12 Golic, J., and Menicocci, R.: ‘Edit distance correlation attack on the
alternating step generator’. Advances in Cryptology: Crypto ’97,
1998, pp. 499–512

13 Razavi, B.: ‘A study of phase noise in CMOS oscillators’, IEEE
J. Solid-State Circuits, 1996, 31, (3), pp. 331–343

14 Xilinx Virtex 2.5 V field programmable gate arrays 2000
15 U.S. Department of Commerce, Security Requirements for

Cryptographic Modules. Federal Information Processing Standards
Publication FIPS 140-1 1994

16 Leong, P.H.W., Leong, M.P., Cheung, O.Y.H., Tung, T., Kwok, C.M.,
Wong, M.Y., and Lee, K.H.: ‘Pilchard – a reconfigurable computing
platform with memory slot interface’. Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), 2001,
pp. 170–179

17 Rukhin el., A. NIST Special Publication 800-22, ‘A statistical test suit
for random and pseudorandom number generators for cryptographic
applications’, 2001

18 Intel Platform Security Division: ‘The Intel random number
generator’. Intel technical brief, 1999. ftp://download.intel.com/
design/security/rng/techbrief.pdf

19 L’Ecuyer, P., and Simard, R.: ‘TestU01: A C library for empirical
testing of random number generators’, ACM Trans. Math. Software,
2007, 33, 4, To be published
IET Comput. Digit. Tech., Vol. 1, No. 4, July 2007

