
Reconfigurable	Computing	
David	Boland1,	Chung-Kuan	Cheng2,	Andrew	B.	Kahng2,	Philip	H.W.	Leong1	

	
1School	of	Electrical	and	Information	Engineering,	The	University	of	Sydney,	Australia	2006	
2Dept.	of	Computer	Science	and	Engineering,	University	of	California,	La	Jolla,	California	

	

	

Abstract:	

Reconfigurable	computing	is	the	application	of	adaptable	fabrics	to	solve	computational	problems,	often	

taking	advantage	of	the	flexibility	available	to	produce	problem-specific	architectures	that	achieve	high	

performance	because	of	customization.	Reconfigurable	computing	has	been	successfully	applied	to	

fields	as	diverse	as	digital	signal	processing,	cryptography,	bioinformatics,	logic	emulation,	CAD	tool	

acceleration,	scientific	computing,	and	rapid	prototyping.	

Although	Estrin-first	proposed	the	idea	of	a	reconfigurable	system	in	the	form	of	a	fixed	plus	variable	

structure	computer	in	1960	[1]	it	has	only	been	in	recent	years	that	reconfigurable	fabrics,	in	the	form	of	

field-programmable	gate	arrays	(FPGAs),	have	reached	sufficient	density	to	make	them	a	compelling	

implementation	platform	for	high	performance	applications	and	embedded	systems.	In	this	article,	

intended	for	the	non-specialist,	we	describe	some	of	the	basic	concepts,	tools	and	architectures	

associated	with	reconfigurable	computing.	

	

Keywords:	

reconfigurable	computing;	adaptable	fabrics;	application	integrated	circuits;	field	programmable	gate	

arrays	(FPGAs);	system	architecture;	runtime	

	 	

1	Introduction	

Although	reconfigurable	fabrics	can	in	principle	be	constructed	from	any	type	of	technology,	in	practice,	

most	contemporary	designs	are	made	using	commercial	field	programmable	gate	arrays	(FPGAs).	An	

FPGA	is	an	integrated	circuit	containing	an	array	of	logic	gates	in	which	the	connections	can	be	

configured	by	downloading	a	bitstream	to	its	memory.	FPGAs	can	also	be	embedded	in	integrated	

circuits	as	intellectual	property	cores.	More	detailed	surveys	on	reconfigurable	computing	are	available	

in	the	literature	[2-6].	

	 Microprocessors	offer	an	easy-to-use,	powerful	and	flexible	implementation	medium	for	digital	

systems.	Their	utility	in	computing	applications	makes	them	an	overwhelming	first	choice.	Moreover,	it	

is	relatively	easy	to	find	software	developers,	and	microprocessors	are	widely	supported	by	operating	

systems,	software	engineering	tools,	and	libraries.	However,	in	the	last	decade,	power	constraints	have	

limited	the	performance	of	serial	computation	on	microprocessors.	This	has	led	to	the	development	of	

multi-core	processors	and	an	increasing	importance	placed	on	the	pursuit	of	parallel	computation	[7].	

Unfortunately,	multi-core	processors	are	rarely	the	most	efficient	method	to	perform	parallel	

computation.	This	inefficiency	stems	from	the	fact	that	each	core	must	be	general	enough	to	support	an	

entire	instruction	set.	As	a	result,	the	majority	of	energy	is	used	in	decoding	the	instruction	and	fetching	

data	instead	of	performing	actual	computation[8].	

Hardware	accelerators	such	as	graphics	processor	units	(GPUs)	and	FPGAs	are	parallel	

computational	architectures	that	have	demonstrated	substantial	performance	and	energy	efficiency	

improvements	over	traditional	multi-core	processor	designs	by	moving	the	focus	back	to	computation	

[9,	10].	In	terms	of	energy	efficiency,	the	GPU	architecture,	which	consists	of	thousands	of	parallel	

floating-point	units,	is	best	suited	to	so-called	embarrassingly	parallel	computation	or	computationally	

expensive	problems.	However,	many	algorithms	will	not	fall	into	this	problem	category.	In	contrast,	

using	an	FPGA	or	Application-Specific	Integrated	Circuit	(ASIC),	it	is	possible	to	create	a	fully	customised	

datapath	for	a	given	algorithm,	meaning	it	is	possible	to	achieve	even	greater	energy	efficiency	using	

these	devices.		

Application-specific	integrated	circuits	(ASICs)	and	FPGAs	achieve	greater	levels	of	parallelism	

than	a	microprocessor	by	arranging	computations	in	a	spatial	rather	than	temporal	fashion.	This	can	

result	in	performance	improvements	of	several	orders	of	magnitude.	Also,	the	absence	of	caches	and	

instruction	decoding	can	result	in	the	same	amount	of	work	being	done	with	less	chip	area	and	lower	

power	consumption[11].	Notable	examples	of	application	domains	include	cryptography,	NP-hard	

optimization	problems,	pattern	matching,	machine	learning,	and	molecular	dynamics	[6].	

	 An	example	involving	the	implementation	of	a	finite	impulse	response	(FIR)	filter	is	shown	in		

Fig.	1.	The	reconfigurable	computing	solution	is	significantly	more	parallel	than	the	microprocessor-

based	one.	In	addition,	it	should	be	apparent	that	the	reconfigurable	solution	avoids	the	overheads	

associated	with	instruction	decoding,	caching,	register	files.	Furthermore,	speculative	execution,	

unnecessary	data	transfers	and	control	hardware	can	be	omitted.	

	

	
Figure	1.	Illustration	of	a	microprocessor	based	FIR	filter	vs.	a	reconfigurable	computing	solution.	In	the	

microprocessor,	operations	are	performed	in	the	ALU	sequentially.	Furthermore,	instruction	decoding,	

caching,	speculative	execution,	control	generation	and	so	on	are	required.	For	the	reconfigurable	

computing	approach	using	an	FPGA,	spatial	composition	is	used	to	increase	the	degree	of	parallelism.	

The	FPGA	implementation	can	be	further	parallelized	through	pipelining.	

	

	 Compared	with	ASICs,	FPGAs	offer	very	low	non-recurrent	engineering	(NRE)	costs,	which	is	

often	a	more	important	factor	than	the	fact	that	FPGAs	have	higher	units	costs.	This	is	because	many	

applications	do	not	have	the	extremely	high	volumes	required	to	make	ASICs	a	cheaper	proposition.	As	

integrated	circuit	feature	sizes	continue	to	decrease,	the	NRE	costs	associated	with	ASICs	continue	to	

escalate,	increasing	the	volume	at	which	it	becomes	cheaper	to	use	an	ASIC	(see	Fig.	2).	Being	more	

specialized,	ASICs	offer	area,	power	and	speed	advantages	over	FPGAs,	this	gap	being	reduced	as	more	

hard	blocks	are	employed	[12].	Moving	forward,	reconfigurable	computing	will	be	used	in	increasingly	

more	applications,	as	ASICs	become	only	cost	effective	for	the	highest	performance	or	highest	volume	

applications.	

	

	
Figure	2.	Cost	of	technology	vs.	volume.	The	crossover	volume	for	which	ASIC	technology	is	cheaper	

than	FPGAs	increases	as	feature	size	is	reduced	because	of	increased	non-recurrent	engineering	costs.	

	

	 Additional	benefits	of	reconfigurable	computing	are	that	its	technology	provides	a	shorter	time	

to	market	than	ASICs	(associated	FPGA	fabrication	time	is	essentially	zero),	making	many	fabrication	

iterations	within	a	single	day	possible.	This	benefit	allows	more	complex	algorithms	to	be	deployed	and	

makes	problem-specific	customizations	of	designs	possible.	FPGA-based	designs	are	inherently	less	risky	

in	terms	of	technical	feasibility	and	cost,	as	shorter	design	times	and	lower	upfront	costs	are	involved.	

As	its	name	suggests,	FPGAs	also	offer	the	possibility	of	modifications	to	the	design	in	the	field,	which	

can	be	used	to	provide	bug	fixes,	modifications	to	adapt	to	changing	standards,	or	to	add	functionality,	

all	of	which	can	be	achieved	by	downloading	a	new	bitstream	to	an	existing	reconfigurable	computing	

platform.	Reconfiguration	can	even	take	place	while	the	system	is	running,	this	being	known	as	runtime	

reconfiguration	(e.g.,	[13]).		

	 In	the	next	section,	we	introduce	the	basic	architecture	of	common	reconfigurable	fabrics,	

followed	by	a	discussion	of	applications	of	reconfigurable	computing	and	system	architectures.	Runtime	

reconfiguration	and	design	methods	are	then	covered.	Finally,	we	discuss	multichip	systems	and	end	

with	a	conclusion.	

COST

VOLUME

Current	ASIC

OlderASIC

Older	FPGA Current	FPGA

Crossover	volume	increases	
with	decreasing	feature	size

2	Reconfigurable	Fabrics	

A	block	diagram	illustrating	a	generic	fine-grained	island-style	FPGA	is	given	in	Fig.	3	[14].	Products	from	

companies	such	as	Xilinx	[15],	Altera	[16],	and	Microsemi	[17]		are	commercial	examples.	The	FPGA	

consists	of	a	number	of	logic	cells	that	can	be	interconnected	to	other	logic	and	input/output	(I/O)	cells	

via	programmable	routing	resources.	Logic	cells	and	routing	resources	are	configured	via	bit-level	

programming	data,	which	is	stored	in	memory	cells	in	the	FPGA.	A	logic	cell	consists	of	user-

programmable	combinatorial	elements,	with	an	optional	register	at	the	output.	They	are	often	

implemented	as	lookup	tables	(LUTs)	with	a	small	number	of	inputs,	4-input	LUTs	being	shown	in	Fig.3.	

Using	such	an	architecture,	subject	to	FPGA-imposed	limitations	on	the	circuit's	speed	and	density,	an	

arbitrary	circuit	can	be	implemented.	The	complete	design	is	described	via	the	configuration	bitstream	

which	specifies	the	logic	and	I/O	cell	functionality,	and	their	interconnection.	

	

	
Figure	3.	Architecture	of	a	basic	islane-style	FPGA	with	four-input	logic	cells.	The	logic	cells,	shown	as	

gray	rectangles	are	connected	to	programmable	routing	resources	(shown	as	wires,	dots,	and	diagonal	

switch	boxes)	(source:	Reference	[14]	and	[18]).	

	

	 Current	trends	are	to	incorporate	additional	embedded	blocks	so	that	designers	can	integrate	

entire	systems	on	a	single	FPGA	device.	Apart	from	density,	cost,	and	board	area	benefits,	this	process	

also	improves	performance	because	more	specialized	logic	and	routing	can	be	used	and	all	components	

are	on	the	same	chip.	A	contemporary	FPGA	commonly	has	features	such	as	carry	chains	to	enable	fast	

addition;	wide	decoders;	tristate	buffers;	blocks	of	on-chip	memory	and	multipliers;	embedded	

microprocessors;	programmable	I/O	standards	in	the	input/output	cells;	delay	locked	loops;	phase	

locked	loops	for	clock	de-skewing,	phase	shifting	and	multiplication;	multi-gigabit	transceivers	(MGTs);	

and	embedded	microprocessors.	Embedded	microprocessors	can	be	implemented	either	as	soft	cores	

using	the	internal	FPGA	resources	or	as	hardwired	cores.	

	 In	addition	to	the	architectural	features	described,	intellectual	property	(IP)	cores,	implemented	

using	the	logic	cell	resources	of	the	FPGA,	are	available	from	vendors	and	can	be	incorporated	into	a	

design.	These	cores	include	bus	interfaces,	networking	components,	memory	interfaces,	signal	

processing	functions,	microprocessors	and	so	on	and	can	significantly	reduce	development	time	and	

effort.	

	 The	bit-level	organization	of	the	logic	and	routing	resources	in	island-style	FPGAs	is	extremely	

flexible	but	has	high	implementation	overhead	as	a	result.	Tradeoffs	exist	in	the	granularity	of	the	logic	

cells	and	routing	resources.	Fine-grained	devices	have	the	best	flexibility;	however,	coarse-grained	

elements	can	trade	some	flexibility	for	higher	performance	and	density	[19].		

With	modern	technologies,	the	speed	of	the	routing	resource	is	a	limiting	factor.	Trends	have	

been	to	increase	the	functionality	of	the	logic	cells	e.g.,	use	logic	cells	with	larger	numbers	of	inputs	

which	can	also	be	configured	as	smaller	LUTs	[20]	and	to	add	pipeline	registers	to	the	routing	fabric	[21].	

For	datapath	oriented	applications	such	as	in	digital	signal	processing,	coarse-grained	architectures	[22]	

such	as	Pipewrench		[23]	and	RaPID	[24]	employ	bus-based	routing	and	word-based	functional	units	to	

utilize	silicon	resources	more	efficiently.		

	 	

	
3	Applications	

Reconfigurable	computing	has	found	widespread	application	in	the	form	of	“custom	computing-

machines”	to	accelerate	computation	over	algorithms	implemented	on	a	CPU.	Application	domains	

include	high-energy	physics	[25],	genome	analysis	[26],	signal	processing	[27,	28],	computer	vision	[29],	

cryptography	[30,	31],	financial	engineering	[10,	32],	scientific	computing	[33],	machine	learning	[34]	

and	security	[35].		

In	many	of	these	problem	domains,	a	general	purpose	GPU	has	also	demonstrated	considerable	

acceleration	over	a	CPU	and	will	often	outperform	an	FPGA	as	well	in	terms	of	raw	performance.	This	is	

because	it	is	a	parallel	architecture	with	many	hardened	floating-point	units	and	substantially	greater	

memory	bandwidth,	meaning	it	is	an	ideal	architecture	provided	algorithms	that	can	be	broken	down	

into	a	large	number	of	parallel	threads.	However,	outright	performance	is	no	longer	the	only	

benchmark;	energy	consumption	is	also	important.	In	terms	of	high	performance	computing,	

supercomputing	clusters	and	datacenters	now	consume	vast	amounts	of	energy,	not	only	on	

computation,	but	also	on	cooling	in	order	to	maintain	performance	and	reliability.	It	follows	that	

reducing	energy	consumption	provides	both	environmental	and	economic	benefits.	Energy	minimization	

is	also	important	for	embedded	applications;	for	example,	reducing	power	consumption	on	

smartphones	or	other	battery-powered	devices	is	desirable	from	an	end	user	perspective.	As	a	result,	

FPGA	and	GPU	vendors	are	focusing	their	engineering	efforts	towards	making	future	architectures	more	

energy	efficient.	This	is	reflected	in	the	most	recent	FPGA	and	GPU	architectures:	Nvidia’s	P100	claims	a	

peak	performance	of	10.6	TFLOPs	(single	precision)	with	a	TDP	of	only	300W	[36],	while	Altera	claims	

performance	of	up	to	9.3	TFLOPs	(single	precision)	at	80	GFLOPs/watt	is	achievable	on	their	upcoming	

Stratix	10	device	[16].	

Many	experimental	studies	have	been	performed	comparing	the	energy	efficiency	of	FPGAs,	

GPUs	and	CPUs;	a	recent	survey	is	provided	[37].	Both	FPGAs	and	GPUs	typically	outperform	CPUs	

according	to	this	metric.	GPUs	have	been	shown	to	be	more	energy	efficient	than	FPGAs	for	certain	

applications	such	as	matrix	multiplication.	To	some	extent,	this	is	a	result	of	the	decision	to	optimize	the	

GPU	architecture	for	this	problem	[38].	However,	the	flexibility	of	an	FPGA	has	seen	it	outperform	a	

GPU,	in	terms	of	energy-efficiency	or	performance-per-watt,	across	a	broader	spectrum	of	applications.	

Examples	include:	2-D	FIR	(finite-impulse	response)	filters,	Viola-Jones	face	detection,	K-means	

clustering,	Monte-Carlo	options	pricing,	random	number	generation,	Smith-Waterman,	3-D	ultrasound	

computer	tomography	[37].	Energy	efficiency	gains	using	FPGAs	have	also	been	claimed	on	commercial	

systems.	For	example,	Microsoft	reported	a	3x	energy	efficiency	gain,	and	a	reduced	latency,	when	using	

FPGAs	instead	of	GPUs	on	their	Catapult	machine	[39],	which	is	discussed	later	in	Section	4.		

While	most	of	these	performance	comparisons	have	been	performed	using	IEEE	standard	single	

or	double	precision	arithmetic,	this	is	not	necessarily	the	most	energy-efficient	design	possible	on	an	

FPGA.	This	is	because	FPGAs	have	the	freedom	to	implement	any	precision,	so	it	may	be	possible	to	

create	a	working	design	using	a	custom	(reduced	precision)	fixed	or	floating-point	number	format	that	is	

sufficient	to	satisfy	a	design	specification.	This	will	avoid	unnecessary	computation	and	can	improve	the	

energy-efficiency	and	performance	of	an	FPGA	implementation	dramatically	[40,	41].		

To	a	degree,	the	flexibility	of	an	FPGA	is	even	beyond	that	possible	in	an	ASIC.	For	example,	in	an	

FPGA-based	implementation	of	RSA	cryptography	[30],	a	different	hardware	modular	multiplier	for	each	

prime	modulus	was	employed	(i.e.,	the	modulus	was	hardwired	in	the	logic	equations	of	the	design).	

Such	an	approach	would	not	be	practical	in	an	ASIC	as	the	design	effort	and	cost	is	too	high	to	develop	a	

different	chip	for	different	moduli.	This	led	to	greatly	reduced	hardware	and	improved	performance,	the	

implementation	being	an	order	of	magnitude	faster	than	any	reported	implementation	in	any	

technology	at	the	time.		

	 Another	important	application	is	logic	emulation	[42,	43]	where	reconfigurable	computing	is	not	

only	used	for	simulation	acceleration,	but	also	for	prototyping	of	ASICs	and	in-circuit	emulation.	In-

circuit	emulation	allows	the	possibility	of	testing	prototypes	at	full	or	near-full	speed,	allowing	more	

thorough	testing	of	time-dependent	applications	such	as	networks.	It	also	removes	many	of	the	

dependencies	between	ASIC	and	firmware	development,	allowing	them	to	proceed	in	parallel	and	hence	

shortening	development	time.	As	an	example,	it	was	used	in	[44]	for	the	development	of	a	two-million-

gate	ASIC	containing	an	IEEE	802.11	medium	access	controller	and	IEEE	802.1	la/b/g	physical	layer	

processor.	Using	a	reconfigurable	prototype	of	the	ASIC	on	a	commodity	FPGA	board,	the	ASIC	went	

through	one	complete	pass	of	real-time	beta	testing	before	tape-out.	

	 Digital	logic,	of	course,	maps	extremely	well	to	fine-grained	FPGA	devices.	The	main	design	

issues	for	such	systems	lie	in	partitioning	of	a	design	among	multiple	FPGAs	and	dealing	with	the	

interconnect	bottleneck	between	chips.	The	Cadence	Protium	Rapid	Prototyping	Platform	[45]	is	a	

commercial	example	of	a	logic	emulation	system	and	has	100	million-gate	logic	capacity	and	fast	

compilation	and	partitioning	algorithms.	Further	discussion	of	interconnect	time-multiplexing	and	

system	decomposition	is	given	later	in	this	article.	Some	examples	of	applications	accelerated	using	

early	multiple	FPGA	systems	are	discussed	below.	

	 Hoang	[26]	implemented	algorithms	to	find	minimum	edit	distances	for	protein	and	DNA	

sequences	on	the	Splash	2	architecture.	Splash	2	can	be	modeled	in	terms	of	both	bidirectional	and	

unidirectional	systolic	arrays.	In	the	bidirectional	algorithm,	the	source	character	stream	is	fed	to	the	

leftmost	processing	element	(PE),	whereas	the	target	stream	is	fed	to	the	rightmost	PE.	Comparing	two	

sequences	of	length	m	and	n	requires	at	least	2	´	max	(m+1,	n+1)	processors,	and	the	number	of	steps	

required	to	compute	the	edit	distance	is	proportional	to	the	size	of	the	array.	The	unidirectional	

algorithm	is	suited	for	comparing	a	single	source	sequence	against	multiple	target	sequences.	The	

source	sequence	is	first	loaded	as	in	the	bidirectional	case,	and	the	target	sequences	are	fed	in	one	after	

the	other	and	processed	as	they	pass	through	the	PEs	(which	results	in	virtually	100%	utilization	of	

processors,	so	that	the	unidirectional	model	is	better	suited	for	large	database	searches).	

	 A	common	application	domain	for	reconfigurable	computing	is	in	real-time	data	acquisition	and	

signal	processing.	The	BEE2	system	[27],	described	in	the	next	section,	was	applied	to	the	radio	

astronomy	signal	processing	domain,	which	included	development	of	a	billion-channel	spectrometer,	a	

1024-channel	polyphase	filter	bank,	and	a	two-input,	1024-channel	correlator.	The	FPGA-based	system	

used	a	130-nm	technology	FPGA	and	performance	was	compared	with	130-and	90-nm	DSP	chips	as	well	

as	a	90-nm	microprocessor.	Performance	in	terms	of	computational	throughput	per	chip	was	found	to	

be	a	factor	of	10	to	34	over	the	DSP	chip	in	130-nm	technology	and	4	to	13	times	better	than	the	

microprocessor.	In	terms	of	power	efficiency,	the	FPGA	was	one	order	of	magnitude	better	than	the	DSP	

and	two	orders	of	magnitude	better	than	the	microprocessor.	Compute	throughput	per	unit	chip	cost	

was	20–307%	better	than	the	90-nm	DSP	and	50–500%	better	than	the	microprocessor.	

	 One	final	emerging	application	domain	is	machine	learning.	Reconfigurable	implementations	

show	great	promise	for	addressing	their	heavy	computational	demands,	and	reconfigurable	computing	

is	particularly	strong	in	embedded	and	low-precision	scenarios.	Tridgell	et.	al.	demonstrated	regression,	

classification	and	novelty	detection	using	online	kernel	methods.	Their	fully	pipelined	implementation	

could	process	continuous	data	at	rates	higher	than	1	Gbps	and	perform	simultaneous	learning	and	

prediction	with	a	latency	of	100	ns	[46].		Zhang	et.	al.	applied	a	roofline	model	to	balance	resource	

utilization	and	memory	bandwidth	in	the	acceleration	of	a	deep	convolutional	neural	network	(CNN).	

They	achieved	62	GFLOPS	on	a	single	Xilinx	Virtex	VC707	board,	this	being	a	4.8X	speedup	over	a	16	

thread	implementation	on	an	Intel	Xeon	E5-2430	processor	[47].	

	 	

4	System	Architectures	

Reconfigurable	computing	machines	are	constructed	by	utilizing	one	or	more	FPGAs.	Most	systems	

include	other	elements,	such	as	microprocessors	and	storage,	and	can	be	treated	as	processing	

elements	and	memory	that	are	interconnected.	Obviously,	the	arrangement	of	these	elements	affects	

the	system	performance	and	routability,	and	some	examples	are	given	in	this	section.	

	 The	Avnet	Zedboard	is	a	development	board	which	integrates	a	single	Xilinx	Zynq	XC7Z020	FPGA	

(which	contains	FPGA	logic	and	a	dual-core	ARM	Cortex-A9	processor),	DDR	memory,	SD	card,	Ethernet,	

USB	and	video	interfaces.	This	single	board	computer	can	run	the	Linux	operating	system,	and	it	

provides	a	low-cost	entry	point	for	teaching	and	research	in	reconfigurable	computing	[48].	

	 The	simplest	topology	for	connecting	multiple	FPGAs	involves	a	ring,	mesh,	or	other	fixed	

pattern.	FPGAs	serve	as	both	logic	and	interconnect,	providing	direct	communication	between	adjacent	

devices.		Such	an	architecture	is	predicated	on	locality	in	the	circuit	design	and	further	assumes	that	the	

circuit	design	maps	well	to	the	planar	mesh.	This	architecture	fits	well	for	applications	with	regular	local	

communications	[49].	However,	in	general,	high	performance	is	hard	to	obtain	for	arbitrary	

communication	patterns	because	the	architecture	only	provides	direct	communications	between	

neighboring	FPGAs	and	two	distant	FPGAs	may	need	many	other	devices	as	“hops”	to	communicate,	

resulting	in	long	and	widely	variable	delays.	Furthermore,	FPGAs,	when	used	as	interconnects,	often	

result	in	poor	timing	characteristics.	

	 Figure	4	depicts	the	SPLASH	2	architecture	[50]	published	in	1990.	Each	board	contains	16	

FPGAs,	X1	through	X16.	The	blocks	M1	through	M16	are	local	memories	of	the	FPGAs.	A	simplified	36-

bit	bus	crossbar,	with	no	permutation	of	the	bit-lines	within	each	bus,	interconnects	the	16	FPGAs.	

Another	36-bit	bus	connects	the	FPGAs	in	a	linear	systolic	fashion.	The	local	memories	are	dual	ported	

with	one	port	connecting	to	the	FPGAs	and	the	other	port	connecting	to	the	external	bus.	It	is	

interesting	to	note	that	the	crossbar	was	added	to	the	SPLASH	2	machine,	the	original	SPLASH	1	machine	

only	having	the	linear	connections.	SPLASH	2	has	been	successfully	used	for	custom	computing	

applications	such	as	search	in	genetic	databases	and	string	matching	[26].	

	

	
Figure	4.	SPLASH2	architecture.	Each	board	contains	16	FPGAs,	XI	through	XI6.	The	blocks	Ml	through	

Ml6	are	local	memories	of	the	FPGAs.	A	simplified	36-bit	bus	crossbar,	with	no	permutation	of	the	bit-

lines	within	each	bus,	interconnects	the	16	FPGAs.	Another	36-bit	bus	connects	the	FPGAs	in	daisy-chain	

fashion.	The	local	memories	are	dual	ported	with	one	port	connecting	to	the	FPGAs	and	the	other	port	

connecting	to	the	external	bus.	

	

	 Other	designs	have	used	a	hierarchy	of	interconnect	schemes,	differing	in	performance.	The	use	

of	multi-gigabit	transceivers	(MGT)	available	on	contemporary	FPGAs	allows	high	bandwidth	

interconnection	using	commodity	components.	An	example	is	the	Berkeley	Emulation	Engine	2	(BEE2)	

[27],	designed	for	reconfigurable	computing	and	illustrated	in	Fig.	5.	Each	compute	module	consists	of	

five	FPGAs	(Xilinx	XC2VP70)	connected	to	four	double	data	rate	2	(DDR2)	dual	inline	memory	modules	

(DIMMs)	with	a	maximum	capacity	of	4GB	per	FPGA.	Four	FPGAs	are	used	for	computation	and	one	for	

control.	Each	PPGA	has	two	PowerPC	405	processor	cores.	A	local	mesh	connects	the	computation	

FPGAs	in	a	2-D	grid	using	low-voltage	CMOS	(LVCMOS)	parallel	signaling.	Off-module	communications	

are	of	via	18	(two	from	the	control	FPGA	and	four	from	each	of	the	compute	FPGAs)	Infiniband	4X	

channel-bonded	2.5-Gbps	connectors	that	operate	full-duplex,	which	corresponds	to	a	180-Gbps	off-

module	full-duplex	communication	bandwidth.	Modules	can	be	interconnected	in	different	topologies	

including	tree,	3-D	mesh,	or	crossbar.	The	use	of	standard	interfaces	allows	standard	network	switches	

such	as	Infiniband	and	10-Gigabit	Ethernet	to	be	used.	Finally,	a	100	base-T	Ethernet	connection	to	the	

control	FPGA	is	present	for	out-of-band	communications,	monitoring,	and	control.	

	

	
Figure	5.	BEE2	Compute	Module	block	diagram.	Compute	modules	can	be	interconnected	via	the	

Infiniband	IB4X	connectors,	either	directly	or	via	a	10-Gigabit	Ethernet	switch.	The	100-Base	T	Ethernet	

can	be	used	for	control,	monitoring,	or	data	archiving.	

	

Commercial	machines,	such	as	the	Maxeler	MPC-X2000	system	[51],	have	a	similar	interconnect	

structure	to	the	BEE2	in	that	they	are	parallel	machines	employing	high	performance	microprocessors	

tightly	coupled	to	a	relatively	small	number	of	FPGA	devices	per	node.	The	MPC-X2000	is	a	1U	server	

with	eight	large	FPGAs,	called	dataflow	engines	(DFEs),	interconnected	in	a	ring	arrangement.	A	total	of	

384	GB	of	dynamic	RAM	is	supported	and	multiple	host	processors	can	communicate	with	each	DFE	via	

a	high-speed	Infiniband	switched	interconnect	network.	Such	machines	can	have	orders	of	magnitude	

performance	improvement	over	conventional	architectures	and	switching	topologies	can	be	altered	via	

configuration	of	the	switching	fabric.	

	 Microsoft	took	a	different	approach	in	their	Catapult	machine,	choosing	a	single	daughter	card	

per	server	over	multi-FPGA	boards	for	the	reasons	of	scalability,	capacity,	power,	space	and	reliability	

[52].	Each	FPGA	card	operates	under	20	W,	is	hosted	by	a	server	via	PCI	Express	and	contains	8	GB	of	

dynamic	RAM.	The	FPGA	boards	are	organized	in	a	24U	arrangement	of	48U	half-width	1U	servers,	

directly	connected	together	with	SAS	cables.	A	test	system	containing	1,632	servers	was	shown	to	

reduce	the	tail	latency	of	the	Microsoft	Bing	search	engine	by	29%	and	improve	ranking	throughput	of	

each	server	by	95%.		

	 The	Intel-Altera	Heterogeneous	Architecture	Research	Platform	(HARP)	utilizes	Intel	Quickpath	

Interconnect	(QPI)	in	a	dual	socket	motherboard	with	the	processor	and	FPGA	residing	each	occupying	a	

socket	[53].	This	offers	higher	bandwidth	and	lower	latency	over	conventional	daughter	cards.	A	

coherent	shared	memory	between	the	processor	and	FPGA	gives	the	promise	of	a	greatly	simplified	

programming	model	and	tighter	processor-FPGA	coupling	which	will	benefit	irregular	data	access	

patterns.		 	

5	Runtime	Reconfiguration	

A	reconfigurable	computing	system	can	have	its	functionality	updated	during	execution,	

resulting	in	reduced	resource	requirements.	A	runtime	reconfigurable	system	partitions	a	design	

temporally	so	that	the	entire	design	does	not	need	to	be	resident	in	the	FPGA	at	any	given	moment	[54,	

55].	Instead,	the	FPGA	fabric	is	time-shared	between	specialized	hardware	accelerators	at	runtime.	

Using	this	technique,	designs	larger	than	the	available	hardware	resources	can	be	realized,	or	

alternatively,	an	existing	design	may	be	implemented	on	a	smaller	or	cheaper	device.	Furthermore,	

energy	efficiency	can	be	increased	because	the	entire	fabric	can	be	used	more	effectively.	

Single	context,	multiple	context	architectures	and	partially	reconfigurable	FPGAs	been	

developed.	In	a	single	context	system,	any	changes	to	the	functionality	of	the	FPGA	involve	reloading	the	

entire	bitstream;	early	FPGAs	were	of	this	type.	This	scheme	has	the	disadvantage	of	long	

reconfiguration	time.	Multiple	context	or	time-sharing	architectures,	lie	at	the	other	extreme.	These	

allow	a	number	of	complete	configurations	to	be	stored	in	the	fabric	simultaneously	and	thus	

reconfiguration	can	be	achieved	in	a	small	number	of	cycles.	These	architectures	were	also	proposed	for	

early	FPGAs.	As	an	example,	an	architecture	named	Dharma,	was	proposed	that	contains	a	functional	

block	and	an	interconnect	network	[56].	By	breaking	a	large	design	into	levels	in	a	folded	pipeline,	the	

logic	modules	and	interconnect	can	be	time-shared	by	dynamically	reconfiguring	each	level.	This	

topology	simplifies	the	architecture	and	provides	predictable	interconnect	delay	(Fig.	6).	Multiple	

context	architectures,	such	as	NEC's	Dynamically	Reconfigurable	Processor	(DRP)	[57],	were	later	

developed.	Such	architectures	have	the	shortest	context	switch	time,	however,	a	larger	area	overhead	is	

associated	with	implementation	of	this	scheme.	

	

	
Figure	6.	Dynamic	Architecture	for	FPGA-based	systems.	The	architecture	contains	a	functional	block	

and	an	interconnect	network.	The	interconnect	and	the	logic	can	be	time	shared.	The	emulated	design	

topology	is	levelized	in	a	folded	pipeline	manner.	The	levelized	topology	simplifies	the	architecture	with	

predictable	interconnect	delay.	

	

Partially	reconfigurable	FPGAs,	as	supported	by	the	major	FPGA	vendors	in	Xilinx	Virtex	[15]	and	

Altera	Stratix	[16]	architectures,	have	begun	to	dominate	the	market.	These	architectures	allow	portions	

of	the	FPGA	to	be	changed	via	a	memory	mapped	scheme	whilst	the	other	portions	of	the	FPGA	

continue	functioning.	In	comparison	to	a	single	context	scheme,	there	is	some	area	overhead	associated	

in	providing	this	feature;	ideally	this	is	compensated	for	by	more	efficient	use	of	the	fabric.			

Many	tools	have	been	developed	to	help	support	runtime	reconfiguration.	Commercial	tools,	

provided	by	the	main	FPGA	vendors	Xilinx	and	Altera	aim	to	abstract	the	low	level	implementation	

details	from	the	engineer.	However,	other	open	source	tools	have	been	developed	to	enable	more	

flexible	systems.	For	example,	ReCoBus-Builder	introduced	a	simple	interface	for	communication	

between	the	static	part	of	a	system	and	the	dynamic	modules,	as	well	as	the	ability	to	place	and	route	

partial	modules	separately,	before	linking	these	compiled	bitstreams	at	run-time	[58].	This	makes	

modules	interchangeable	and	speeds	up	the	compilation	process.	The	GoAhead	tool	takes	this	further,	

allowing	the	FPGA	fabric	to	be	separated	into	different	regions,	with	individual	modules	compiled	to	fit	

into	one	or	more	of	these	regions	[59].	It	also	provides	support	for	modules	to	communicate	between	or	

across	regions.	This	improves	flexibility	in	placement	of	modules	and	promotes	sharing	across	regions.	

Tools	to	help	determine	the	optimum	number	of	regions	have	also	been	generated	[60].	

The	aforementioned	tools	are	also	able	to	support	hierarchical	designs,	where	a	partial	region	

does	not	need	to	be	fully	reconfigured;	instead	a	smaller	region	within	this	area	can	be	reconfigured.	

This	has	multiple	advantages.	Firstly,	storing	a	few	different	modules	at	each	hierarchical	level	provides	

a	huge	amount	of	flexibility,	saving	significant	configuration	memory	in	comparison	to	storing	all	

different	modules	at	the	highest	level.	Furthermore,	since	only	a	small	region	needs	to	be	reconfigured,	

the	reconfiguration	time	is	reduced	[61].		

Tools	also	exist	to	help	overlap	re-configuration	and	computation	to	maximize	the	performance	

of	the	device.	For	example	ZyCAP,	which	is	based	on	the	Xilinx	Zynq	architecture	with	an	embedded	

ARM	CPU,	provides	software	drivers	to	help	reconfiguration	be	overlapped	with	computation	by	

controlling	all	the	reconfiguration	processes	[62].	It	can	alert	the	software	that	configuration	is	

complete,	and	also	manages	how	partial	bitstreams	are	stored	in	memory.	This	is	important	to	help	

maximize	performance,	for	example,	this	tool	offers	the	ability	to	cache	partial	bitstreams	in	DRAM	to	

speed	up	the	reconfiguration	process.	Finally,	there	are	also	efforts	to	verify	the	partial	bitstreams	

perform	the	desired	functionality	[63].	

There	are	many	examples	of	run-time	reconfiguration,	with	the	logical	unit	of	reconfiguration	

ranging	from	application-level	down	to	a	sub-instruction.	These	are	discussed	below:	

At	the	application	level,	examples	include	adapting	the	bitstream	according	to	changes	in	

environmental	conditions.	For	example,	Claus	et	al.	discussed	how	hardware	accelerators	may	be	

needed	for	real-time	video	processing,	but	in	the	context	driver	assistance,	adapting	them	according	to	

changing	light	conditions	could	improve	performance.	They	demonstrated	that	this	can	prove	

worthwhile	since	modules	can	be	quickly	reconfigured	between	frames	[64].		

Task	level	reconfiguration	is	common	for	software	defined	radio,	for	example	when	switching	

between	encoding	schemes.	The	trade-offs	between	full	or	partial	reconfiguration	in	this	problem	

domain	are	discussed	by	Delahaye	et	al.	[65].	Similarly,	Feillen	et	al.	discussed	how	different	stages	of	

digital	video	decoding	do	not	needs	to	operate	concurrently,	meaning	the	same	hardware	could	be	re-

used	in	this	example	[66].	Task	level	reconfiguration	for	an	operating	system	has	also	been	proposed	

[67].	Under	control	of	software	running	on	a	microprocessor,	task	circuits	can	be	scheduled	online	and	

placed	in	a	suitable	free	space	in	a	hardware	task	area.	Communications	between	tasks	and	I/O	are	done	

through	a	task	communication	bus,	and	termination	of	a	task	frees	the	reconfigurable	resources	used.	It	

was	shown	that	hardware	in	the	hardware	task	area	can	be	shared	by	tasks	and	the	overheads	

associated	with	its	implementation	on	a	partially	configurable	platform	were	acceptably	low.	This	helps	

improve	scheduling	of	real-time	tasks.	

Instruction	level	reconfiguration	has	been	demonstrated	for	hardware	accelerated	database	

queries.	Different	hardware	modules	for	SQL	queries	could	be	dynamically	configured	to	improve	

performance	[68]	and	energy	efficiency	[69].	A	CPU	system	with	custom	instructions	is	another	common	

candidate	for	instruction	level	reconfiguration.	An	early	example	includes	the	Dynamic	Instruction	Set	

Computer	(DISC)	[70],	which	supported	demand-driven	modification	of	the	instruction	set	through	

partial	reconfiguration.	The	commercial	Stretch	processor	[71]	combines	reconfigurable	fabric	with	a	

processor	to	support	the	execution	of	custom	instructions	implemented	on	a	reconfigurable	fabric.	

Furthermore,	the	fabric	can	be	reconfigured	at	runtime	and	the	design	environment	is	software-centric,	

with	programming	of	the	processor	being	in	Stretch	C.		

Finally,	partial	reconfiguration	has	also	been	shown	for	sub-instructions.	For	example,	a	pipeline	

stage	could	be	a	convenient	unit	of	reconfiguration,	as	demonstrated	by	incremental	pipeline	

reconfiguration	[72].	Assume	an	FPGA	that	has	enough	silicon	area	for	N	physical	pipeline	stages,	but	

the	design	contains	M	pipeline	stages	(where	M>>N).	Through	adding	one	pipeline	stage	and	removing	

the	trailing	pipeline	stage	in	each	stage	of	the	computation,	execution	and	computation	can	be	

overlapped.	Such	a	circuit	will	implement	a	pipeline	of	depth	N	and	fully	utilize	the	FPGA	at	any	given	

point	in	time.	Runtime	reconfiguration	can	be	done	at	even	lower	levels.	Examples	include	those	

supporting	hierarchical	designs	for	a	CPU	with	greater	numbers	of	custom	instructions	[61]	and	a	

crossbar	switch	which	employs	runtime	reconfiguration	of	the	FPGA's	routing	resources	[73].	By	partially	

reconfiguring	routing	multiplexers,	this	scheme	was	able	to	achieve	density,	switch	update	latency	and	

performance	higher	than	possible	using	conventional	means.	

	 	 	

6	Design	methods	

Hardware	description	languages	(HDLs)	such	as	the	Very	High	Speed	Integrated	Circuit	Hardware	

Description	Language	(VHDL)	and	Verilog	are	commonly	used	to	specify	the	logic	of	a	reconfigurable	

system.	Descriptions	in	these	languages	have	the	advantage	of	being	vendor	neutral,	so	the	same	

description	can	be	synthesized	for	different	targets	such	as	different	FPGA	devices,	different	FPGA	

vendors,	and	ASICs.	For	this	reason,	these	languages	are	often	the	target	language	for	higher	level	tools	

that	offer	higher	levels	of	abstraction.	

	 Module	generators	and	libraries	are	commonly	deployed	to	promote	reuse.	For	example,	

vendors	such	as	Altera	and	Xilinx	have	parameterized	libraries	of	components	that	can	be	used	in	a	

design.	These	libraries	are	generated	so	that	a	circuit	optimized	for	the	particular	application	can	be	

produced.	As	an	example,	a	parameterized	floating	point	library	might	allow	the	wordlength	of	the	

exponent	and	significand	to	be	specified	as	well	as	whether	denormalized	numbers	are	supported.	The	

module	generator	then	generates	a	netlist	or	VHDL-based	floating	point	adder	that	can	be	included	in	a	

design.	Open	source	alternatives,	such	as	the	FloPoCo	library	also	provide	vendor	neutral	alternatives	to	

generate	many	key	components	[74].	

	 In	an	effort	to	help	make	FPGAs	more	mainstream,	efforts	have	been	placed	into	high-level	

synthesis,	which	is	the	process	of	compiling	a	traditional	high	level	language	down	to	a	netlist	or	HDL.	

The	use	of	traditional	programming	languages	improves	productivity	as	low	level	details	are	handled	by	

the	compiler.	This	is	analogous	to	C	versus	assembly	language	for	software	development.	Another	

difference	with	potentially	large	implications	is	that,	using	these	tools,	software	developers	can	also	

design	reconfigurable	computing	applications	

	 As	an	early	example,	Luk	and	Page	described	a	simple	compilation	process	[75,	76]	from	a	high	

level	language	with	explicit	parallel	extensions	to	a	register	transfer	language	(RTL)	description.	Parallel	

execution	of	statements	is	implemented	via	parallel	processes,	and	these	can	communicate	via	channels	

through	which	a	single-word	message	can	be	passed.	Variables	in	the	user	program	are	mapped	to	

registers,	all	expressions	are	implemented	as	combinational	logic,	and	multiplexers	are	used	in	the	case	

a	register	has	multiple	sources.	A	datapath	that	matches	the	dataflow	graph	of	the	input	source	

description	is	generated	using	this	strategy.	The	clocking	scheme	employed	is	a	global,	synchronous	one,	

and	a	convention	that	each	assignment	takes	exactly	one	clock	cycle	is	followed.	A	start	signal	is	used	to	

feed	the	clock	and	to	enable	each	register	that	corresponds	to	a	variable,	and	a	finish	signal	is	generated	

for	the	assignment	in	the	following	clock	cycle.	To	execute	statements	sequentially,	the	start	and	finish	

signals	of	adjacent	statements	are	simply	connected	together,	creating	a	one-hot	distributed	control	

scheme.	Conditional	statements	and	loops	are	formed	by	asserting	one	of	several	possible	start	signals	

that	correspond	to	alternative	basic	blocks	in	a	program.	Completion	of	conditional	or	loop	constructs	

and	synchronization	of	parallel	blocks	are	implemented	by	combining	relevant	finish	signals	using	the	

appropriate	combinatorial	logic.	An	example	showing	the	translation	of	a	simple	code	fragment	to	

control	and	datapath	is	shown	in	Fig.	7.	

	

	
Figure	7.	Hardware	compilation	example.	The	C	program	is	translated	into	a	datapath	(top)	and	control	

(bottom).	Execution	of	statements	in	the	while	loop	are	controlled	by	s1	and	s2;	s0	and	s3	correspond	to	

the	start	signals	of	the	statements	before	and	after	the	while	loop.	

	

High-level	synthesis	tools	have	since	moved	beyond	simply	translating	a	high-level	language	to	a	

hardware	design;	instead	they	focus	on	creating	an	optimized	hardware	design.	Straightforward	

examples	may	include	extracting	parallelism	through	loop	unrolling	or	creating	deeply	pipelined	designs	

to	maximize	clock	frequency.	However,	finer-grained	optimisations	are	also	possible.	For	example,	since	

moving	data	onto	the	FPGA	can	be	expensive,	storing	data	locally	on	the	chip	and	re-using	the	data	can	

have	substantial	performance	implications	[77].	While	the	idea	is	similar	to	that	of	caching	on	a	

microprocessor,	on	an	FPGA	the	local	buffers	can	be	sized	according	to	the	needs	of	a	particular	

algorithm,	saving	resources.	Alternatively,	the	memory	can	be	arranged	in	a	fashion	that	provides	a	

large	memory	bandwidth,	which	may	be	necessary	to	feed	a	parallel	datapath.	Moreoever,	the	interface	

with	the	DRAM	can	also	be	controlled	to	ensure	that	memory	reads	occur	faster,	for	example	by	

‘activating’	rows	that	are	soon	to	be	read	[78].	Another	optimization	is	to	fine	tune	the	precision	used	

throughout	computations,	i.e.	to	use	as	little	precision	as	is	necessary	to	meet	your	design	specification.	

Unlike	a	CPU	implementation,	an	FPGA	design	has	the	freedom	to	implement	any	precision.	Since	

arithmetic	operators	with	less	precision	use	less	silicon	area,	using	the	minimum	precision	necessary	

frees	resources,	allowing	for	greater	parallel	performance.	Tools	to	support	this	design	methodology,	

both	in	fixed	and	floating	point	arithmetic	are	being	supported	[79,	80].	

Various	other	issues	with	the	mapping	of	algorithms	to	hardware	are	more	generally	discussed	

by	Isshiki	and	Dai	[81],	who	focus	on	the	differences	between	implementing	bit-serial	versus	bit-parallel	

modules	(e.g.,	adders	and	multipliers)	on	FPGA	architectures.	Although	latency	is	larger	for	bit-serial	

modules,	the	reduction	in	area	frequently	makes	area-time	products	significantly	lower	for	such	

implementations.	More	specifically,	such	advantages	as	the	following	can	be	obtained:	1)	For	bit-parallel	

modules,	the	I/O	pin	limitation	is	a	major	problem,	and	the	large	size	of	the	module	cluster	can	result	in	

unused	space	and	underutilized	logic	resources;	2)	bit-serial	modules	are	easier	to	partition	as	cell-to-

cell	connections	are	sparse	and	do	not	cause	I/O	problems;	and	3)	high	fanout	nets	can	impair	

routability	of	bit-parallel	modules.	Leong	and	Leong	[82]	generalized	further	with	a	design	methodology	

that	can	translate	a	dataflow	description	with	signals	of	different	wordlengths	to	a	digit	serial	design.	

	 Commercial	tools	that	can	compile	standard	programming	languages	such	as	Java,	C,	or	C++	

(e.g.,	[76])	are	available.	Examples	include	Xilinx’s	Vivado	HLS	[15],	Maxeler’s	MaxCompiler	[83]	and	

Catapult	C	from	Mentor	Graphics	[84].	Domain-specific	languages	such	as	MATLAB/Simulink	offer	even	

greater	improvements	in	productivity	because	they	are	interactive,	include	a	large	library	of	primitive	

routines	and	toolkits,	and	have	good	graphing	capabilities.	Indeed,	many	designs	for	communications	

and	signal	processing	are	first	prototyped	in	MATLAB	and	then	converted	to	other	languages	for	

implementation.	Tools	such	as	the	MATCH	compiler	[85]	and	Xilinx	System	Generator	[15],	Altera	DSP	

builder	[16]	and	Mathwork’s	HDL	coder	[86]	can	translate	a	subset	of	MATLAB/Simulink	directly	to	an	

FPGA	design.		There	is	also	interest	in	supporting	more	parallel	C-to-gates	flows.	Support	for	more	

recent	parallel	programming	languages	is	gaining	traction,	for	example	Altera	SDK	for	OpenCL	[16]	and	

efforts	to	support	NVidia’s	CUDA	using	FPGAs	[87].	

Due	to	the	difficulty	in	creating	a	full-custom	design,	there	is	also	support	for	creating	

hardware/software	co-designs.	The	availability	of	embedded	operating	systems	such	as	Linux	for	

microprocessors	on	an	FPGA	provide	a	familiar	software	development	environment	for	programmers,	

greatly	facilitating	program	development	through	the	availability	of	a	large	range	of	open-source	

libraries	as	well	as	high	quality	development	tools.	Such	tools	can	greatly	speed	up	the	development	

time	and	improve	the	quality	of	embedded	systems.	For	example,	Altera's	Nios	II	C-to-Hardware	

acceleration	compiler	enable	time-critical	functions	in	a	C	program	to	be	converted	to	a	hardware	

accelerator	that	is	tightly	coupled	to	a	microprocessor	within	the	FPGA	[88].	These	tools	will	support	soft	

processors,	such	as	the	Altera	NIOS	or	Xilinx	Microblaze,	and	embedded	processors,	such	as	those	on	

the	Xilinx	Zynq	or	Altera	SoCs.	With	the	latter,	for	optimal	performance,	the	parts	of	an	algorithm	that	

are	easily	parallelizable	should	make	use	of	the	parallel	FPGA	fabric,	whereas	serial	parts	of	the	

algorithm	should	be	run	on	a	processor	[89].	

A	final	design	approach	to	allow	for	fast	FPGA	prototyping	is	the	use	of	overlay	architectures.	

These	are	coarse-grained	architectures	with	software-like	programmability,	with	the	aim	of	sacrificing	

some	performance	in	exchange	for	ease	of	implementation.	For	example,	VectorBlox	extends	the	

hardware-software	paradigm	by	using	the	FPGA	fabric	to	provide	parallel	vector	instructions	that	can	be	

easily	executed	[90].	A	typical	design	flow	using	this	technology	would	be	to	create	an	initial	software	

design,	add	vector	instructions	within	a	software	style	development	to	obtain	some	acceleration	and	

finally	create	custom	hardware	instructions	for	the	most	time	consuming	parts	of	an	algorithm.	This	may	

provide	a	faster	time	to	market.	Many	overlays	architectures	have	been	created,	including	some	for	

specific	applications,	such	as	for	efficient	network	on	chip	(NOC)	interconnections	of	processors	[91]	or	

data	flow	graphs	[92],	and	some	designed	to	make	use	of	specific	hardened	components	on	FPGAs	such	

as	DSPs	[93].		

	 	

7	Multichip	Systems	

Special	care	must	be	taken	in	the	design	of	large	and	multichip	reconfigurable	systems.	In	this	section,	

we	describe	some	theoretic	results	relevant	to	the	major	architectural	and	issues	associated	with	such	

designs.	

7.1	Interconnect	Organization	

A	classic	Clos	network	[94]	contains	three	stages:	inputs,	intermediate	switches,	and	outputs,	as	shown	

in	Fig.	8.	It	can	be	used	to	interconnect	pins	in	a	reconfigurable	computing	system,	and	its	input	and	

output	stages	are	symmetric.	Suppose	the	first	stage	has	r	n×	m	crossbar	switches,	the	second	stage	has	

m	r	×	r	switches,	and	the	third	stage	has	r	m	×	n	switches,	let	us	denote	the	network	as	c(n,	m,	r).	For	any	

two-pin	net	interconnect	requirement,	the	network	c(n,	m,	r)	can	achieve	complete	routability	if	m	is	

not	less	than	n.	The	routing	method	can	be	described	by	recursive	operations	[95].	In	the	first	iteration,	

we	reduce	the	network	to	c(n-1,	m-1,	r)	.	In	the	ith	iteration,	we	reduce	the	network	to	c(n-i,	m-i,	r).	

When	n-i=1,	we	have	r1×(m-n+1)		switches	in	the	first	stage,	m-n+1r×r	switches	in	the	second	stage,	and	

r(m-n+1)	×1	switches	in	the	third	stage.	In	other	words,	only	one	input	exists	in	each	first-stage	switch	

and	one	output	in	each	third-stage	switch.	In	this	case,	one	second-stage	r	×	r	switch	is	enough	to	route	

the	r	inputs	of	r	first-stage	switches	to	the	r	outputs	of	r	third-stage	switches,	thus	completing	the	

interconnect.	

	

	
Figure	8.	Clos	network.	A	Clos	network	contains	three	stages:	inputs,	intermediate	switches,	and	

outputs.	The	input	and	output	stages	are	symmetric.	In	the	figure,	the	first-stage	has	r	n	×	m	switches,	

the	second-stage	has	m	r	×	r	switches,	and	the	third-stage	has	r	m	×	n	switches.	

	

	 The	reduction	from	c(n-i,	m-i,	r)	to	c(n-i-1,	m-i-1,	r)	can	be	derived	by	a	maximum	matching	

algorithm.	The	matching	algorithm	selects	disjoint	signals	from	different	input	switches	to	different	

output	switches.	One	second-stage	switch	is	then	used	to	route	the	selected	signals.	From	Hall's	

theorem,	the	maximum	matching	and	routing	can	always	reduce	the	network	to	c(n-i-1,	m-i-1,	r).	

	 Conceptually,	the	routing	problem	can	also	be	formulated	as	edge	coloring	on	a	bipartite	graph	

G(V1,	V2,	E)	[96].	The	node	sets	V1	andV2	represent	the	switches	in	the	input	and	output	stages,	

respectively.	An	edge	in	E	represents	a	two-pin	net	interconnect	requirement	between	the	

corresponding	input	and	output	switches.	In	Reference	[96],	Chan	and	Schlag	assigned	colors	to	the	

edges	of	the	bipartite	graph.	Edges	of	the	same	color	are	bundled	into	one	group	and	the	corresponding	

set	of	nets	are	routed	by	one	switch	in	the	second	stage.	The	work	of	Reference	[97]	was	then	used	to	

find	a	minimum	edge	coloring	solution	in	O(|E|	log	n).	

	 The	three-stage	Clos	network	can	be	folded	into	a	two-stage	network	(Fig.	9)	so	that	the	inputs	

and	outputs	are	mixed	in	the	first	stage.	Thus,	the	corresponding	bipartite	graph	G(V1,	V2,	E)	constructed	

above	for	edge	coloring	is	also	folded	with	V1	and	V2	merged	into	one	set.	

	

	
Figure	9.	Folded	Clos	network.	The	three-stage	Clos	network	is	folded	into	a	two-stage	network	so	that	

the	inputs	and	outputs	are	mixed	in	the	first	stage.	

	

	 To	find	the	routing	assignment,	the	folded	edge	coloring	graph	can	be	unfolded	back	to	a	

bipartite	graph	using	an	Euler	path	search.	The	Euler	path	traverses	every	edge	exactly	once	and	defines	

the	edge	direction	according	to	the	direction	of	the	traversal.	We	then	recover	the	original	bipartite	

graph	by	splitting	the	node	set	back	into	two	sets	V1	and	V2	and	unfold	the	edges	such	that	all	edges	are	

directed	from	V1to	V2.	We	can	find	the	minimum	edge	coloring	solution	of	the	unfolded	bipartite	graph	

and	apply	the	solution	back	to	the	folded	routing	problem.	

	 In	practice,	the	first-level	crossbar	of	the	Clos	network	is	replaced	with	FPGAs	to	save	board	

space	(Fig.	10).	Routability	is	worse	than	an	ideal	Clos	network.	Even	with	a	true	Clos	network,	complete	

routability	of	multipin	nets	is	not	guaranteed,	which	is	an	important	practical	consideration	because	in	

microelectronic	design,	many	multipin	nets	typically	exist.	

	

	
Figure	10.	Variations	of	the	Clos	network.	The	first	level	crossbar	of	the	Clos	network	is	replaced	with	

FPGAs	to	save	board	space.	Routability	is	worse	than	an	ideal	Clos	network.	

	

	 In	an	attempt	to	solve	the	multipin	net	and	routability	problem,	we	can	introduce	extra	

connections	among	FPIDs	as	shown	in	Fig.	11.	However,	extra	FPID	interconnections	also	incur	extra	

delay.	We	can	also	expand	the	fanout	width	of	FPGAs	so	that	each	FPGA	I/O	pin	is	connected	to	more	

than	one	FPIC	[98,	99].	The	fanout	width	expansion	improves	routability	without	significant	additional	

delay.	The	multiple	appearances	of	I/O	pins	increase	the	probability	that	a	signal	connection	can	be	

made	in	a	single	stage,	which	is	especially	critical	for	multipin	nets.	However,	the	additional	fanouts	

increase	the	needed	pin	count	of	FPICs.	Thus,	we	need	to	find	a	balanced	fanout	distribution	that	

reduces	the	interconnect	delay	with	a	minimal	pin	requirement.	

	

	
Figure	11.	Variations	of	Clos	network.	The	fanout	width	of	FPGAs	is	expanded	so	that	each	FPGA	I/O	pin	

is	connected	to	more	than	one	FPIC.	The	fanout	width	expansion	improves	routability	without	significant	

additional	delay.	

	

	 A	tree-structured	network	can	simplify	the	mapping	process	for	certain	applications.	In	

Reference	[100],	an	example	of	a	tree-structured	network	is	illustrated	for	a	Very	Large	Scale	Simulator	

(VLSS).	The	VLSS	tree	structure	has	all	logic	components	located	at	the	leaves	and	interconnect	switches	

at	the	internal	nodes.	The	machine	covers	a	capacity	of	eight	million	gates.	Each	branch	is	an	8-bit	bus.	

The	higher	up	the	level	of	the	tree,	the	less	parallelism	the	signal	distribution	can	achieve.	Therefore,	a	

partitioning	process	is	designed	to	minimize	the	high	level	interconnect	and	maximize	the	parallel	

operation.	

7.2	Interconnect	Multiplexing	

Time	multiplexing	is	an	effective	method	for	tackling	the	scalability	problem	in	interconnecting	large	

designs.	The	time-sharing	method	can	be	extended	from	traditional	bus	organization	[42,	100]	to	

network	sharing	[101]	and	further	to	function	block	sharing	[56].	

	 Interconnect	can	be	time	shared	as	a	bus	[42,	100].	If	n	communication	lines	exist	between	two	

FPGAs,	they	can	be	reduced	to	a	single	line	by	storing	logical	outputs	in	shift	registers	and	time-

multiplexing	the	communication	in	phases.	Such	a	scheme	was	employed	in	the	virtual	wires	logic	

emulation	system	[42],	which	is	efficient	because	interconnects	are	normally	capable	of	being	clocked	at	

much	higher	rates	than	the	critical	path	of	the	rest	of	the	system,	and	all	logical	wires	are	not	

simultaneously	active.	This	scheme	can	greatly	reduce	the	complexity	of	the	interconnecting	network	or	

printed	circuit	board	in	a	multi-FPGA	system.	

	 Li	and	Cheng	[101]	proposed	that	a	dynamic	network	be	viewed	as	overlapping	L	conventional	

FPICs	together	but	sharing	the	same	I/O	pins.	A	dynamic	routing	architecture	can	increase	the	routability	

and	shorten	interconnect	length.	Each	switching	network	is	a	full	crossbar,	which	can	be	reconfigured	to	

provide	any	connections	among	I/O	pins.	The	select	lines	are	used	to	activate	only	one	switching	

network	at	a	time;	thus	the	I/O	pins	are	dynamically	connected	according	to	the	configuration	of	this	

active	switching	network.	By	dynamically	reconfiguring	the	FPICs,	L	logic	signals	can	time-share	the	same	

interconnect	resources.	

7.3	Memory	Allocation	

Interconnect	schemes	should	also	consider	how	memory	is	connected	to	the	FPGAs.	Although	

combining	memory	with	logic	in	the	same	FPGA	is	the	most	desirable	method	for	reducing	routing	

congestion	and	signal	delay,	separate	components	can	supply	much	larger	capacity	at	higher	density	and	

lower	price.	Figure	12	demonstrates	three	different	ways	of	allocating	the	memories	in	a	Clos	network	

[96,	102].	The	memory	may	be	attached	directly	to	a	local	FPGA	(Fig.	12a),	attached	to	the	second-stage	

switches	of	the	Clos	network	via	a	host	interface	(Fig.	12b),	or	attached	to	the	first-stage	switches	of	the	

Clos	network	(Fig.	12c).	The	first	method	provides	good	performance	for	local	memory	access.	However,	

for	the	case	of	nonlocal	memory	access,	the	routability	and	delay	are	concerns.	The	second	method	is	

slower	than	the	first	method	for	local	memory	accesses	but	provides	better	routability.	The	third	is	the	

most	flexible	as	the	memory	is	attached	to	the	network	and	the	routability	is	high.	However,	every	logic-

to-memory	communication	must	go	through	the	second	interconnect	stage.	

	

	

Figure	12.	Memory	organization,	(a)	Memory	is	attached	directly	to	a	local	FPGA.	(b)	Memory	is	

attached	to	the	second-stage	switches	of	the	Clos	network	via	a	host	interface,	(c)	Memory	is	attached	

to	the	first-stage	switches	of	the	Clos	network.	

	

7.4	Bus	Buffer	Insertion	

In	FPGAs,	signal	propagation	is	inherently	slow	because	of	its	programmable	interconnect	feature.	

However,	the	delay	of	long	routing	wires	can	be	drastically	reduced	by	buffer	insertion.	The	principle	at	

work	is	that	by	inserting	buffers	we	can	decouple	capacitive	effects	of	components	and	interconnect	

driven	by	the	buffers	and	thereby	improve	RC	delay.	

	 Given	a	routing	topology	for	a	net	and	timing	requirements	for	its	sinks,	an	efficient	optimal	

buffer	insertion	algorithm	was	proposed	in	[103].	Experimental	results	show	dramatic	improvement	

versus	the	unbuffered	solution.	Thus,	it	is	advantageous	to	have	abundant	buffers	in	FPGAs.	However,	

each	possible	buffer	and	its	programmable	switch	adds	capacitance	to	the	wires,	which	in	turn	will	

contribute	to	delay.	Thus,	a	balance	point	needs	to	be	identified	to	tradeoff	between	the	additional	

delay	and	capacitance	of	the	buffers	versus	the	improvement	they	can	provide.	

	 For	a	multisourced	bus,	the	problem	of	buffer	insertion	becomes	more	complicated,	because	

the	optimization	for	one	source	may	sacrifice	the	delay	of	others.	Furthermore,	the	direction	of	the	

buffer	needs	to	be	arbitrated	by	a	controller.	Instead	of	using	such	a	controller,	a	novel	approach	is	to	

use	a	patented	open	collector	bus	repeater	[104].	When	idle,	the	two	ends	of	the	repeater	are	set	to	

high.	When	the	repeater	senses	the	pull-down	action	on	one	side,	it	presents	the	signal	on	the	other	

side	until	the	pull-down	action	is	released	from	the	originated	signal.	The	bus	repeater	eliminates	the	

need	for	a	direction	control	signal,	resulting	in	a	simpler	design	and	better	use	of	resources.	

7.5	System	Decomposition	

To	decompose	a	system	into	multiple	devices,	Yeh	et	al.	[105]proposed	an	algorithm	based	on	the	

relationship	between	uniform	multi-commodity	flow	and	min-cut	partitioning.	Yeh	et	al.	construct	a	flow	

network	wherein	each	net	initially	corresponded	an	edge	with	flow	cost	one.	Two	random	modules	in	

the	network	were	chosen	and	the	shortest	path	(i.e.,	path	with	lowest	cost)	between	them	was	

computed.	A	constant	Δ	<1	was	added	to	the	flow	for	each	net	in	the	shortest	path,	and	the	cost	for	

every	net	in	the	path	was	incremented.	Adjusting	the	cost	penalizes	paths	through	congested	areas	and	

forces	alternative	shortest	paths.	This	random	shortest	path	computation	is	repeated	until	every	path	

between	the	chosen	pair	of	modules	passes	through	at	least	one	“saturated”	net.	The	set	of	saturated	

nets	induces	a	multi-way	partitioning	in	which	two	modules	belong	to	the	same	cluster	if	and	only	if	

there	is	a	path	of	unsaturated	nets	between	them.	

	 For	each	of	these	clusters,	the	flux	(defined	as	the	cutsize	between	the	cluster	and	its	

complement,	divided	by	the	size	of	the	cluster)	is	computed	and	the	clusters	are	sorted	based	on	their	

flux	value.	Yeh	et	al.	began	with	a	single	cluster	equal	to	the	entire	netlist,	and	then	peeled	off	the	

clusters	with	lowest	flux.	This	approach	was	attractive	because	the	saturated	nets	are	good	candidates	

to	be	cut	in	a	partitioning	solution.	As	peeled	clusters	can	be	very	small,	a	second	phase	may	be	used	to	

make	the	multi-way	partitioning	more	balanced.	This	approach,	with	its	subsequent	speedup	by	Yeh	

[106],	is	well-suited	for	large-scale	multi-way	partitioning	instances.	

	 The	system	prototyping	phase	may	also	explore	netlist	transformations	such	as	logic	replication	

and	retiming	to	minimize	cut	size	(I/O	usage)	or	system	cycle	time.	Such	transformations	are	needed	as	

inter-device	delays	can	be	relatively	large	and	because	devices	are	often	I/O-limited.	In	Reference	[107],	

Liu	et	al.	proposed	a	partitioning	algorithm	that	permits	logic	replication	to	minimize	both	cut	size	and	

clock	cycle	of	sequential	circuits.	Given	a	netlist	G=	(V,	E),	their	approach	chooses	two	modules	as	seeds	

s	and	t,	then	constructs	a	“replication	graph”	that	is	twice	the	size	of	the	original	circuit.	This	graph	has	

the	special	property	that	a	type	of	directed	minimum	cut	yields	the	replication	cut	(i.e.,	a	decomposition	

of	V	into	S,	T,	and	R	=	V-S-T	where	s	Î	S,	t	Î	T	and	R	is	the	replicated	logic)	that	is	optimal.	A	directed	

version	of	the	Fiduccia-Mattheyses	algorithm	is	used	to	find	a	heuristic	directed	minimum	cut	in	the	

replication	graph.	Cong	et	al.	[108]	present	an	efficient	algorithm	for	the	performance-driven	multi-way	

circuit	partitioning	problem	that	considers	the	different	local	and	global	interconnect	delay	introduced	

by	the	partitioning.	

	 Alpert	and	Kahng	[109]	survey	the	FPGA	partitioning	literature	in	the	context	of	major	graph	

partitioning	paradigms.	The	current	partitioning	problems	are	(i)	low	usage	rate	of	FPGA	gate	capacity	

because	I/O	pin	limit,	(ii)	low	clock	rate	because	of	interconnect	delay	between	multiple	FPGAs	and	(iii)	

long	CPU	time	for	the	mapping	process.	

7.6	System	Planning	and	Design	Changes	

For	a	given	system	decomposition	to	be	implemented	on	a	multi-FPGA	prototyping	architecture,	all	

connections	within	each	device	and	between	devices	must	be	routable.	Chan	et	al.	[110]	invoke	much	

literature	on	routability	prediction	in	gate	arrays,	as	well	as	theoretical	concepts,	such	as	the	Rent	

parameter,	to	obtain	a	fast	routability	estimate	for	arbitrary	netlists	and	FPGA	architectures.	Their	

method	ascribes	one	of	three	levels	of	routable	(easily	routable,	marginally	routable,	or	unroutable)	to	a	

netlist	based	on	various	parameters.	Specifically,	combining	a	wirelength	estimator	due	to	Feuer,	the	

average	number	of	pins-per-cell,	and	the	estimated	Rent	parameter	yields	a	relatively	accurate	

routability	predictor.	The	utility	of	these	parameters	is	contrasted	with	that	of	other	criteria	such	as	El	

Gamal's	channel	width	requirement	[111]	or	the	average	pins-per-net	ratio.	

	 In	addition	to	routability,	connections	must	also	meet	system	timing	constraints.	Selvidge	et	al.	

[112]	extend	the	original	virtual	wires	[42]	concept	in	their	TIERS	(Topology-IndEpendent	Routing	and	

Scheduling)	approach.	The	problem	formulation	assumes	that	an	assignment	from	a	multiple-FPGA	

partitioning	(i.e.,	a	design	graph)	to	a	target	topology	graph	has	already	been	made.	The	objective	is	to	

assign	“links”	(i.e.,	signal	nets)	to	channels	between	devices;	as	with	the	Virtual	Wires	concept,	specific	

timeslices	for	a	channel	can	be	assigned	to	multiple	links	as	long	as	no	two	links	need	to	transmit	signals	

at	the	same	time.	The	TIERS	algorithm	uses	a	greedy	method	to	order	the	links	and	then	routes	each	link	

in	the	scheduled	order	while	reserving	channel	resources;	factors	of	up	to	2.5	improvement	in	system	

cycle	time	are	achieved.	

	 Chang,	et	al.	[113]	address	the	combined	issues	of	routability	and	system	timing	by	applying	

layout-driven	logic	resynthesis	techniques.	For	a	given	wire	that	cannot	be	routed,	“alternative	wires”	

and	alternative	functions	are	identified,	such	that	the	given	unroutable	wire	can	be	removed	from	the	

circuit	and	replaced	with	a	new	wire	(or	wires)	or	new	logic	without	affecting	functionality.	Cheng	et	al.	

estimate	that	between	30%	and	50%	of	wires	have	so-called	“triple-wire	alternatives”	(i.e.,	

replacements	consisting	of	three	or	fewer	wires).	Their	method	first	routes	the	wires	that	do	not	have	

any	alternatives	then	replaces	any	unroutable	wire	with	available	alternatives.	System	timing	can	be	

improved	by	replacing	long	wires	with	shorter	alternatives.	

	

8	Conclusions	

Reconfigurable	computing	offers	a	middle	ground	between	software-based	systems	and	ASIC	

implementations,	and	is	often	able	to	combine	important	benefits	of	both.	Implementations	are	able	to	

avoid	overheads	such	as	unnecessary	data	transfers,	decoding	and	control	mandatory	in	

microprocessors,	and	designs	can	be	optimized	on	a	basis	specific	to	an	application,	a	problem	instance	

or	even	an	execution.	Using	this	technology,	it	is	possible	to	achieve	size,	performance,	cost,	or	power	

improvements	over	more	conventional	computing	technologies.	

9	Acknowledgments	

The	authors	would	like	to	thank	Y	M.	Lam	for	his	help	in	preparing	this	manuscript	and	Prof.	Wayne	Luk	

(Imperial	College)	for	his	proofreading	of	this	article.	

	

	
Bibliography	

[1]	 G.	Estrin,	"Reconfigurable	Computer	Origins:	The	UCLA	Fixed-plus-variable	(F+V)	Structure	
computer,"	IEEE	Ann.	Hist.	Comput,	vol.	24,	pp.	3--9,	2002.	

[2]	 S.	Hauck,	"The	roles	of	FPGAs	in	reprogrammable	systems,"	Proc.	IEEE,	vol.	86,	pp.	615-639,	
1998.	

[3]	 K.	Compton	and	S.	Hauck,	"Reconfigurable	computing:	a	survey	of	systems	and	software,"	ACM	
Comput.	Surveys	(CSUR),	vol.	34,	pp.	171-210,	2002.	

[4]	 K.	Bondalapati	and	V.	K.	Prasanna,	"Reconfigurable	computing	systems,"	Proc.	IEEE,	vol.	90,	pp.	
1201-1217,	2002.	

[5]	 T.	J.	Todman,	G.	A.	Constantinides,	S.	J.	E.	Wilton,	O.	Mencer,	W.	Luk,	and	P.	Y.	K.	Cheung,	
"Reconfigurable	computing:	architectures	and	design	methods,"	IEE	Proc.	Computers	and	Digital	
Techniques,	vol.	152,	pp.	193-205,	2005.	

[6]	 R.	Tessier,	K.	Pocek,	and	A.	DeHon,	"Reconfigurable	Computing	Architectures,"	Proc.	IEEE,	vol.	
103,	pp.	332-354,	2015.	

[7]	 H.	Sutter	and	J.	Larus,	"Software	and	the	concurrency	revolution,"	Queue,	vol.	3,	pp.	54--62,	
2005.	

[8]	 J.	Cong,	M.	A.	Ghodrat,	M.	Gill,	B.	Grigorian,	K.	Gururaj,	and	G.	Reinman,	"Accelerator-Rich	
Architectures,"	in	Proc.	Design	Automation	Conference,	pp.	1--6,	2014.	

[9]	 J.	Fowers,	G.	Brown,	P.	Cooke,	and	G.	Stitt,	"A	performance	and	energy	comparison	of	FPGAs,	
GPUs,	and	multicores	for	sliding-window	applications,"	in	Proc.	ACM/SIGDA	Int.	Symp.	on	Field	
Programmable	Gate	Arrays	pp.	47–56,	2012.	

[10]	 D.	B.	Thomas,	L.	Howes,	and	W.	Luk,	"A	comparison	of	CPUs,	GPUs,	FPGAs,	and	massively	
parallel	processor	arrays	for	random	number	generation,"	Proc.	Int.	Symp.	on	Field	
programmable	gate	arrays,	pp.	63-72,	2009.	

[11]	 A.	DeHon,	"The	density	advantage	of	configurable	computing,"	IEEE	Computer,	vol.	33,	pp.	41-
49,	2000.	

[12]	 I.	Kuon	and	J.	Rose,	"Measuring	the	Gap	Between	FPGAs	and	ASICs,"	IEEE	Trans.	on	Computer-
Aided	Design	of	Integrated	Circuits	and	Systems,	vol.	26,	pp.	203-215,	2007.	

[13]	 J.	Liang,	R.	Tessier,	and	D.	Goeckel,	"A	Dynamically-Reconfigurable,	Power-Efficient	Turbo	
Decoder,"	in	Proc.	Int.	Symp.	on	Field-Programmable	Custom	Computing	Machines,	pp.	91--100,	
2004.	

[14]	 V.	Betz,	J.	Rose,	and	A.	Marquardt,	"Architecture	and	CAD	for	Deep-Submicron	FPGAS,"	ed.	
Dordrecht,	the	Netherlands:	Kluwer	Academic	Publisher,	1999.	

[15]	 Xilinx,	"http://www.xilinx.com,"	(accessed	2016).	
[16]	 Altera,	"http://www.altera.com,"	(accessed	2016).	
[17]	 Microsemi,	"http://www.microsemi.com,"	(accessed	2016).	
[18]	 M.	P.	Leong,	"FPGA	Design	Methodologies	for	High	Performance	Applications,"	The	Chinese	

University	of	Hong	Kong	2001.	
[19]	 E.	Ahmed	and	J.	Rose,	"The	effect	of	LUT	and	cluster	size	on	deep-submicron	FPGA	performance	

and	density,"	in	Proc.	ACM/SIGDA	Int.	Symp.	on	Field	programmable	gate	arrays,	pp.	3-12,	2000.	
[20]	 D.	Lewis,	A.	Lee,	P.	Leventis,	S.	Marquardt,	C.	McClintock,	K.	Padalia,	et	al.,	"The	Stratix	II	logic	

and	routing	architecture,"	in	Proc.	Int.	Symp.	on	Field-programmable	gate	arrays,	pp.	14-20,	
2005.	

[21]	 D.	Lewis,	G.	Chiu,	J.	Chromczak,	D.	Galloway,	B.	Gamsa,	V.	Manohararajah,	et	al.,	"The	Stratix™	
10	Highly	Pipelined	FPGA	Architecture,"	in	Proc.	Int.	Symp.	on	Field-Programmable	Gate	Arrays,	
pp.	159-168,	2016.	

[22]	 R.	Hartenstein,	"Coarse	grain	reconfigurable	architecture	(embedded	tutorial),"	in	Proc.	conf.	on	
Asia	South	Pacific	design	automation,	2001.	

[23]	 S.	C.	Goldstein,	H.	Schmit,	M.	Budiu,	S.	Cadambi,	M.	Moe,	and	R.	R.	Taylor,	"PipeRench:	a	
reconfigurable	architecture	and	compiler,"	Computer,	vol.	33,	pp.	70-77,	2000.	

[24]	 C.	Ebeling,	D.	C.	Cronquist,	and	P.	Franklin,	"RaPiD	—	Reconfigurable	pipelined	datapath,"	in	
Proc.	Int.	Workshop	on	Field-Programmable	Logic,	Smart	Applications,	New	Paradigms	and	
Compilers,	pp.	126-135,	1996.	

[25]	 L.	Moll,	J.	Vuillemin,	and	P.	Boucard,	"High-energy	physics	on	DECPeRLe-1	programmable	active	
memory,"	in	Proc.	ACM	Int.	Symp.	on	Field-programmable	gate	arrays,	pp.	47-52,	1995.	

[26]	 D.	T.	Hoang,	"Searching	genetic	databases	on	Splash	2,"	in	Proc.	IEEE	Workshop	on	FPGAs	for	
Custom	Computing	Machines	pp.	185-191,	1993.	

[27]	 C.	Chen,	J.	Wawrzynek,	and	R.	W.	Brodersen,	"BEE2	A	High-End	Reconfigurable	Computing	
System,"	IEEE	Des.	Test.	Comput.,	vol.	22,	pp.	114-125,	2005.	

[28]	 L.-K.	Ting,	R.	Woods,	and	C.	F.	N.	Cowan,	"Virtex	FPGA	implementation	of	a	pipelined	adaptive	
LMS	predictor	for	electronic	support	measures	receivers,"	IEEE	Trans.	on	Very	Large	Scale	
Integration	(VLSI)	Systems,	vol.	13,	pp.	86-95,	2005.	

[29]	 M.	Pohl,	M.	Schaeferling,	and	G.	Kiefer,	"An	efficient	FPGA-based	hardware	framework	for	
natural	feature	extraction	and	related	Computer	Vision	tasks,"	in	Proc.	Int.	Conf.	on	Field	
Programmable	Logic	and	Applications,	pp.	1-8,	2014.	

[30]	 M.	Shand	and	J.	Vuillemin,	"Fast	implementations	of	RSA	cryptography,"	in	Proc.	IEEE	Symp.	on	
Computer	Arithmetic,	pp.	252-259,	1993.	

[31]	 K.	H.	Tsoi,	K.	H.	Lee,	and	P.	H.	W.	Leong,	"A	massively	parallel	RC4	key	search	engine,"	in	Proc.	
Int.	Symp.	on	Field-Programmable	Custom	Computing	Machines,	pp.	13-21,	2002.	

[32]	 G.	L.	Zhang,	P.	H.	W.	Leong,	C.	H.	Ho,	K.	H.	Tsoi,	C.	C.	C.	Cheung,	D.	Lee,	et	al.,	"Reconfigurable	
acceleration	for	Monte	Carlo	based	financial	simulation,"	in	Proc.	Int.	Conf.	on	Field-
Programmable	Technology,	2005.,	pp.	215-222,	2005.	

[33]	 D.	Boland,	"Reducing	Memory	Requirements	for	High-Performance	and	Numerically	Stable	
Gaussian	Elimination,"	Proc.	ACM/SIGDA	Int.	Symp.	on	Field-Programmable	Gate	Arrays,	pp.	
244-253,	2016.	

[34]	 N.	J.	Fraser,	D.	J.	M.	Moss,	L.	JunKyu,	S.	Tridgell,	C.	T.	Jin,	and	P.	H.	W.	Leong,	"A	fully	pipelined	
kernel	normalised	least	mean	squares	processor	for	accelerated	parameter	optimisation,"	in	
Proc.	Int.	Conf.	on	Field	Programmable	Logic	and	Applications,	pp.	1--6,	2015.	

[35]	 J.	E.	Vuillemin,	P.	Bertin,	D.	Roncin,	M.	Shand,	H.	H.	Touati,	and	P.	Boucard,	"Programmable	
active	memories:	reconfigurable	systems	come	of	age,"	IEEE	Trans.	on	Very	Large	Scale	
Integration	(VLSI)	Systems,	vol.	4,	pp.	56-69,	1996.	

[36]	 Nvidia,	"(accessed	2016)."	http://www.nvidia.com.	
[37]	 S.	Mittal	and	J.	S.	Vetter,	"A	Survey	of	Methods	for	Analyzing	and	Improving	GPU	Energy	

Efficiency,"	ACM	Comput.	Surv.,	vol.	47,	pp.	1-23,	2014.	
[38]	 Nvidia.	((accessed	2016)).	NVIDIA	Tesla®	K20-K20X	GPU	Accelerators	Benchmarks	Application	

Performance	Technical	Brief	http://www.nvidia.com/docs/IO/122874/K20-and-K20X-
application-performance-technical-brief.pdf		

[39]	 K.	Ovtcharov,	O.	Ruwase,	J.-Y.	Kim,	K.	Strauss,	and	E.	Chung,	Accelerating	Deep	Cconvolutional	
Neural	Networks	Using	Specialized	Hardware:	Microsoft	Research,	2015.	

[40]	 S.	Gupta,	A.	Agrawal,	K.	Gopalakrishnan,	and	P.	Narayanan,	"Deep	Learning	with	Limited	
Numerical	Precision,"	in	Int.	Conf.	on	Machine	Learning,	pp.	1337–1345,	2013.	

[41]	 J.	L.	Jerez,	G.	A.	Constantinides,	and	E.	C.	Kerrigan,	"Fixed	Point	Lanczos:	Sustaining	TFLOP-
equivalent	Performance	in	FPGAs	for	Scientific	Computing,"	in	Proc.	Int.	Symp.	on	Field-
Programmable	Custom	Computing	Machines,	pp.	53-60,	2012.	

[42]	 J.	Babb,	R.	Tessier,	M.	Dahl,	S.	Z.	Hanono,	D.	M.	Hoki,	and	A.	Agarwal,	"Logic	emulation	with	
virtual	wires,"	IEEE	Trans.	Computer-Aided	Design	of	Integrated	Circuits	and	Systems,	vol.	16,	pp.	
609-626,	1997.	

[43]	 J.	Varghese,	M.	Butts,	and	J.	Batcheller,	"An	efficient	logic	emulation	system,"	IEEE	Trans.	on	
Very	Large	Scale	Integration	(VLSI)	Systems,	vol.	1,	pp.	171-174,	1993.	

[44]	 L.	de	Souza,	P.	Ryan,	J.	Crawford,	K.	Wong,	G.	Zyner,	and	T.	McDermott,	"Prototyping	for	the	
Concurrent	Development	of	an	IEEE	802.11	Wireless	LAN	Chipset,"	in	Proc.	Int.	Conf.	on	Field	
Programmable	Logic	and	Application,	ed,	2003,	pp.	51-60.	

[45]	 Cadence,	"Protium	Rapid	Prototyping	Platform	https://www.cadence.com/content/cadence-
www/global/en_US/home/tools/system-design-and-verification/fpga-
basedprototyping/protium-rapid-prototyping-platform.html,"	(accessed	2016).	

[46]	 D.	M.	Stephen	Tridgell,	Nicholas	J.	Fraser,	and	Philip	H.W.	Leong,	"Braiding:	a	scheme	for	
resolving	hazards	in	NORMA,"	in	Proc.	Int.	Conf.	on	Field	Programmable	Technology,	pp.	136–
143,	2015.	

[47]	 P.	L.	Chen	Zhang,	Guangyu	Sun,	Yijin	Guan,	Bingjun	Xiao	and	Jason	Cong,	"Optimizing	FPGA-
based	Accelerator	Design	for	Deep	Convolutional	Neural	Networks,"	in	Proc.	ACM/SIGDA	Int.	
Symp.	on	Field-Programmable	Gate	Arrays,	pp.	161-170,	2015.	

[48]	 R.	A.	E.	Louise	H.	Crockett,	Martin	A.	Enderwitz,	and	Robert	W.	Stewart.	,	The	Zynq	Book:	
Embedded	Processing	with	the	Arm	Cortex-A9	on	the	Xilinx	Zynq-7000	all	Programmable	UK,	
2014.	

[49]	 P.	Bertin,	D.	Roncin,	and	J.	Vuillemin,	"Introduction	to	Programmable	Active	Memories,"	ed:	DEC	
Memo	3,	1989,	pp.	1-9.	

[50]	 J.	M.	Arnold,	D.	A.	Buell,	and	E.	G.	Davis,	"Splash	2,"	in	Proc.	ACM	symp.	on	Parallel	algorithms	
and	architectures,	1992.	

[51]	 Maxeler,	"https://www.maxeler.com/products/mpc-xseries/,"	(accessed	2016).	
[52]	 A.	Putnam,	A.	M.	Caulfield,	E.	S.	Chung,	D.	Chiou,	K.	Constantinides,	J.	Demme,	et	al.,	"A	

reconfigurable	fabric	for	accelerating	large-scale	datacenter	services,"	in	Int.	Symp.	on	Computer	
Architecture	(ISCA),	2014.	

[53]	 Y.-k.	Choi,	J.	Cong,	Z.	Fang,	Y.	Hao,	G.	Reinman,	and	P.	Wei,	"A	quantitative	analysis	on	
microarchitectures	of	modern	CPU-FPGA	platforms,"	in	Proc.	Design	Automation	Conference,	
2016.	

[54]	 J.	Villasenor	and	W.	H.	Mangione-Smith,	"Configurable	Computing,"	Scientif.	Amer.,	vol.	276,	pp.	
66-71,	1997.	

[55]	 J.	Becker	and	M.	Hübner,	"Run-time	reconfigurabilility	and	other	future	trends,"	in	Proc.	symp.	
on	Integrated	circuits	and	systems	design,	pp.	9-11,	2006.	

[56]	 N.	B.	C.	Bhat,	K.;	Kuh,	E.	S,	"Performance-oriented	Fully	Routable	Dynamic	Architecture	for	a	
Field-programmable	Logic	Device,"	Memorandum	No.	UCB/ERL	M93/42,	Electronics	Research	
Lab.,	College	of	Engineering,	UC	Berkeley,	pp.	1-21,	1993.	

[57]	 M.Motomura,	"A	Dynamically	Reconfigurable	Processor	Architecture,,"	Microprocessor	Forum,	
2002.	

[58]	 D.	Koch,	C.	Beckhoff,	and	J.	Teich,	"ReCoBus-Builder	-	A	novel	tool	and	technique	to	build	
statically	and	dynamically	reconfigurable	systems	for	FPGAS,"	in	Proc.	Int.	Conf.	on	Field	
Programmable	Logic	and	Applications,	pp.	119-124,	2008.	

[59]	 C.	Beckhoff,	D.	Koch,	and	J.	Torresen,	"Go	Ahead:	A	Partial	Reconfiguration	Framework,"	in	Proc.	
Int.	Symp.	on	Field-Programmable	Custom	Computing	Machines,	pp.	37-44,	2012.	

[60]	 K.	Vipin	and	S.	A.	Fahmy,	"Efficient	region	allocation	for	adaptive	partial	reconfiguration,"	in	
Proc.	Int.	Conf.	on	Field-Programmable	Technology,	pp.	1-6,	2011.	

[61]	 D.	Koch	and	C.	Beckhoff,	"Hierarchical	reconfiguration	of	FPGAs,"	in	Proc.	Int.	Conf.	on	Field	
Programmable	Logic	and	Applications,	pp.	1-8,	2014.	

[62]	 K.	Vipin	and	S.	A.	Fahmy,	"ZyCAP:	Efficient	Partial	Reconfiguration	Management	on	the	Xilinx	
Zynq,"	IEEE	Embedded	Systems	Letters,	vol.	6,	pp.	41-44,	2014.	

[63]	 L.	Gong	and	O.	Diessel,	Functional	Verification	of	Dynamically	Reconfigurable	FPGA-based	
Systems,	1	ed.:	Springer	International	Publishing,	2015.	

[64]	 C.	Claus,	R.	Ahmed,	F.	Altenried,	and	W.	Stechele,	"Towards	Rapid	Dynamic	Partial	
Reconfiguration	in	Video-Based	Driver	Assistance	Systems,"	in	Proc.	Int.	Symp	on	Reconfigurable	
Computing:	Architectures,	Tools	and	Applications,	ed,	2010,	pp.	55-67.	

[65]	 G.	G.	Jean-Philippe	Delahaye,	Christian	Roland,	Pierre	Bomel,	"Software	radio	and	dynamic	
reconfiguration	on	a	dsp/fpga	platform,"	Frequenz,	journal	of	telecommunications,	pp.	152-159,	
2004.	

[66]	 M.	Feilen,	M.	Ihmig,	C.	Schwarzbauer,	and	W.	Stechele,	"Efficient	DVB-T2	decoding	accelerator	
design	by	time-multiplexing	FPGA	resources,"	in	Proc.	Int.	Conf.	on	Field	Programmable	Logic	
and	Applications,	pp.	75-82,	2012.	

[67]	 C.	Steiger,	H.	Walder,	and	M.	Platzner,	"Operating	systems	for	reconfigurable	embedded	
platforms:	online	scheduling	of	real-time	tasks,"	IEEE	Trans.	on	Computers,	vol.	53,	pp.	1393-
1407,	2004.	

[68]	 C.	Dennl,	D.	Ziener,	and	J.	Teich,	"On-the-fly	Composition	of	FPGA-Based	SQL	Query	Accelerators	
Using	a	Partially	Reconfigurable	Module	Library,"	in	Proc.	Int.	Symp.	on	Field-Programmable	
Custom	Computing	Machines	(FCCM),	pp.	45-52,	2012.	

[69]	 A.	Becher,	F.	Bauer,	D.	Ziener,	and	J.	Teich,	"Energy-aware	SQL	query	acceleration	through	
FPGA-based	dynamic	partial	reconfiguration,"	in	Proc.	Int.	Conf.	on	Field	Programmable	Logic	
and	Applications,	pp.	1-8,	2014.	

[70]	 M.	J.	Wirthlin	and	B.	L.	Hutchings,	"A	dynamic	instruction	set	computer,"	in	Proc.	IEEE	Symp.	on	
FPGAs	for	Custom	Computing	Machines,	pp.	99–107,	1995.	

[71]	 Stretch,	"http://www.stretchinc.com/,"	(accessed	2016).	
[72]	 H.	Schmit,	"Incremental	reconfiguration	for	pipelined	applications,"	in	Proc.	5th	Annual	IEEE	

Symp.	on	Field-Programmable	Custom	Computing	Machines,	pp.	47-55,	1997.	
[73]	 S.	Young,	P.	Alfke,	C.	Fewer,	S.	McMillan,	B.	Blodget,	and	D.	Levi,	"A	high	I/O	reconfigurable	

crossbar	switch,"	in	Proc.	Int.	Symp.	on	Field-Programmable	Custom	Computing	Machines,	pp.	3-
10,	2003.	

[74]	 F.	d.	D.	a.	B.	Pasca,	"Designing	custom	arithmetic	data	paths	with	FloPoCo,"	IEEE	Design	&	Test	
of	Computers,	vol.	28,	pp.	18--27,	2011.	

[75]	 W.	Luk	and	I.	Page,	"Compiling	Occam	into	FPGAs,"	ed:	EE	&	CS	books,	1991,	pp.	271-283.	
[76]	 I.	Page,	"Constructing	hardware-software	systems	from	a	single	description,"	VLSI	Signal	

Processing,	vol.	12,	pp.	87-107,	1996.	
[77]	 Q.	Liu,	G.	A.	Constantinides,	K.	Masselos,	and	P.	Y.	K.	Cheung,	"Automatic	On-chip	Memory	

Minimization	for	Data	Reuse,"	in	Proc.	Int.	Symp.	on	Field-Programmable	Custom	Computing	
Machines	pp.	251-260,	2007.	

[78]	 S.	Bayliss	and	G.	A.	Constantinides,	"Optimizing	SDRAM	bandwidth	for	custom	FPGA	loop	
accelerators,"	Proc.	ACM/SIGDA	Int.	Symp.	on	Field	Programmable	Gate	Arrays,	pp.	195--204,	
2012.	

[79]	 D.	U.	Lee,	A.	A.	Gaffar,	R.	C.	C.	Cheung,	O.	Mencer,	W.	Luk,	and	G.	A.	Constantinides,	"Accuracy-
Guaranteed	Bit-Width	Optimization,"	IEEE	Trans.	on	Computer-Aided	Design	of	Integrated	
Circuits	and	Systems,	vol.	25,	pp.	1990-2000,	2006.	

[80]	 D.	Boland	and	G.	A.	Constantinides,	"Bounding	Variable	Values	and	Round-Off	Effects	Using	
Handelman	Representations,"	IEEE	Trans.	on	Computer-Aided	Design	of	Integrated	Circuits	and	
Systems,	vol.	30,	pp.	1691-1704,	2011.	

[81]	 T.	Isshiki	and	W.	W.	Dai,	"High-Level	Bit-Serial	Datapath	Synthesis	for	Multi-FPGA	Systems,"	in	
Proc.	Int.	Workshop	on	FPGAs,	pp.	161-174,	1995.	

[82]	 M.	P.	Leong	and	P.	H.	W.	Leong,	"A	variable-radix	digit-serial	design	methodology	and	its	
application	to	the	discrete	cosine	transform,"	IEEE	Trans.	on	Very	Large	Scale	Integration	(VLSI)	
Systems,	vol.	11,	pp.	90-104,	2003.	

[83]	 M.	Technologies,	"MaxCompiler	"	(white	paper),	2011.	
[84]	 M.	Graphics,	"Catapult	High-Level	Synthesis	https://www.mentor.com/hls-lp/catapult-high-

level-synthesis/c-systemc-hls,"	(Accessed	2016).	
[85]	 M.	Haldar,	A.	Nayak,	A.	Choudhary,	and	P.	Banerjee,	"A	system	for	synthesizing	optimized	FPGA	

hardware	from	Matlab,"	in	IEEE/ACM	Int.	Conf.	on	Computer	Aided	Design,	pp.	314–319,	2001.	
[86]	 Mathworks,	"http://www.mathworks.com/products/hdl-coder/,"	(accessed	2016).	
[87]	 A.	Papakonstantinou,	K.	Gururaj,	J.	A.	Stratton,	D.	Chen,	J.	Cong,	and	W.	M.	W.	Hwu,	"FCUDA:	

Enabling	efficient	compilation	of	CUDA	kernels	onto	FPGAs,"	in	Symp.	on	Application	Specific	
Processors,	pp.	35-42,	2009.	

[88]	 D.	Lau,	O.	Pritchard,	and	P.	Molson,	"Automated	Generation	of	Hardware	Accelerators	with	
Direct	Memory	Access	from	ANSI/ISO	Standard	C	Functions,"	in	Proc.	Int.	Symp.	on	Field-
Programmable	Custom	Computing	Machines	pp.	45-56,	2006.	

[89]	 A.	G.	Weisz,	A.	J.	Melber,	A.	Y.	Wang,	A.	K.	Fleming,	A.	E.	Nurvitadhi,	and	A.	J.	C.	Hoe,	"A	Study	of	
Pointer-Chasing	Performance	on	Shared-Memory	Processor-FPGA	Systems,"	Proc.	ACM/SIGDA	
Int.	Symp.	on	Field-Programmable	Gate	Arrays,	pp.	264-273,	2016		

[90]	 Vectorblox,	"http://vectorblox.com/,"	(accessed	2016).	
[91]	 N.	Kapre	and	J.	Gray,	"Hoplite:	Building	austere	overlay	NoCs	for	FPGAs,"	in	Proc.	Int.	Conf.	on	

Field	Programmable	Logic	and	Applications,	pp.	1-8,	2015.	
[92]	 D.	Capalija	and	T.	S.	Abdelrahman,	"A	high-performance	overlay	architecture	for	pipelined	

execution	of	data	flow	graphs,"	in	Int.	Conf.	on	Field	programmable	Logic	and	Applications,	pp.	
1-8,	2013.	

[93]	 A.	K.	Jain,	X.	Li,	P.	Singhai,	D.	L.	Maskell,	and	S.	A.	Fahmy,	"DeCO:	A	DSP	Block	Based	FPGA	
Accelerator	Overlay	With	Low	Overhead	Interconnect,"	Proc.	Int.	Symp.	on	Field-Programmable	
Custom	Computing	Machines,	pp.	1--8,	2016.	

[94]	 C.	Clos,	"A	Study	of	Non-Blocking	Switching	Networks,"	Bell	System	Technical	Journal,	vol.	32,	pp.	
406-424,	1953.	

[95]	 V.	E.	Beneš,	"Mathematical	Theory	of	Connecting	Networks	and	Telephone	Traffic,"	ed.	New	
York:	Academic	Press,	1965.	

[96]	 P.	K.	Chan	and	M.	D.	F.	Schlag,	"Architectural	tradeoffs	in	field-programmable-device-based	
computing	systems,"	in	Proc.	IEEE	Workshop	on	FPGAs	for	Custom	Computing	Machines,	pp.	
152-161,	1993.	

[97]	 R.	Cole	and	J.	Hopcroft,	"On	Edge	Coloring	Bipartite	Graphs,"	SIAM	J.	Comput.,	vol.	11,	pp.	540-
546,	1982.	

[98]	 G.	Richards	and	F.	Hwang,	"A	Two-Stage	Rearrangeable	Broadcast	Switching	Network,"	IEEE	
Trans.	Communications,	vol.	33,	pp.	1025-1035,	1985.	

[99]	 I-Cube,	"Using	FPID	Devies	in	FPGA-based	Prototyping,"	ed:	Application	Note,	1994,	pp.	1–11.	
[100]	 Y.	C.	Wei,	C.	K.	Cheng,	and	Z.	Wurman,	"Multiple-level	partitioning:	an	application	to	the	very	

large-scale	hardware	simulator,"	IEEE	J.	Solid-State	Circuits,	vol.	26,	pp.	706-716,	1991.	
[101]	 J.	Li	and	C.	K.	Cheng,	"Routability	improvement	using	dynamic	interconnect	architecture,"	in	

Proc.	IEEE	Symp.	on	FPGAs	for	Custom	Computing	Machines,	pp.	2-7,	1995.	

[102]	 P.	K.	S.	Chan,	M.	D.	F.;	Martin,	M.,	"BORG:	A	Reconfigurable	Prototyping	Board	Using	Field-
programmable	Gate	Arrays,"	in	Int.	Workshop	on	FPGA,	pp.	47–51,	1992.	

[103]	 J.	Lillis,	C.	K.	Cheng,	and	T.	T.	Y.	Lin,	"Optimal	wire	sizing	and	buffer	insertion	for	low	power	and	a	
generalized	delay	model,"	in	Proc.	Int.	Conf.	on	Computer	Aided	Design	(ICCAD),	pp.	138-143,	
1995.	

[104]	 W.	J.	Hsieh,	Y.	C.	Jenq,	C.	S.	Horng,	and	K.	Lofstrom,	"Input/output	I/O	Bidirectional	Buffer	for	
Interfacing	I/O	Parts	of	a	Field	Programmable	Interconnection	Device	with	Array	Ports	of	a	
Cross-point	Switch.	,"	US	Patent	5,428,800,	1992.	

[105]	 C.-W.	Yeh,	C.-K.	Cheng,	and	T.-T.	Y.	Lin,	"A	probabilistic	multicommodity-flow	solution	to	circuit	
clustering	problems,"	in	Proc.	IEEE/ACM	Int.	Conf.	on	Computer-Aided	Design,	pp.	428–431,	
1992.	

[106]	 Y.	Ching-Wei,	"On	the	acceleration	of	flow-oriented	circuit	clustering,"	IEEE	Trans.	on	Computer-
Aided	Design	of	Integrated	Circuits	and	Systems,	vol.	14,	pp.	1305-1308,	1995.	

[107]	 L.-T.	Liu,	M.-t.	Kuo,	C.-K.	Cheng,	and	T.	C.	Hu,	"Performance-Driven	Partitioning	Using	a	
Replication	Graph	Approach,"	in	Proc.	Design	Automation	Conference	pp.	206-210,	1995.	

[108]	 J.	Cong,	S.	K.	Lim,	and	C.	Wu,	"Performance	driven	multi-level	and	multiway	partitioning	with	
retiming,"	in	Proc.	Design	Automation	Conf.,	pp.	274-279,	2000.	

[109]	 C.	J.	Alpert	and	A.	B.	Kahng,	"Recent	directions	in	netlist	partitioning:	a	survey,"	Integration,	the	
VLSI	Journal,	vol.	19,	pp.	1-81,	1995.	

[110]	 P.	K.	Chan,	M.	D.	F.	Schlag,	and	J.	Y.	Zien,	"On	routability	prediction	for	Field-Programmable	Gate	
Arrays,"	in	Proc.	Design	Automation	Conference	pp.	326-330,	1993.	

[111]	 A.	E.	Gamal,	"Two-dimensional	stochastic	model	for	interconnections	in	master	slice	integrated	
circuits,"	IEEE	Trans.	Circuits	Syst.,	vol.	28,	pp.	127-138,	1981.	

[112]	 C.	Selvidge,	A.	Agarwal,	M.	Dahl,	and	J.	Babb,	"TIERS:	Topology	Independent	Pipelined	Routing	
and	Scheduling,"	in	Proc.	ACM	Int.	Symp.	on	Field-programmable	gate	arrays	pp.	25-31,	1995.	

[113]	 S.-C.	Chang,	K.-T.	Cheng,	N.-S.	Woo,	and	M.	Marek-Sadowska,	"Layout	driven	logic	synthesis	for	
FPGAs,"	in	Proc.	Design	Automation	Conference	pp.	308-313,	1994.	

	
	

	

