
IP Generation for an FPGA-based Audio DAC
Sigma-Delta Converter

Ralf Ludewig1, Oliver Soffke1, Peter Zipf1, Manfred Glesner1,
Kong Pang Pun2, Kuen Hung Tsoi2, Kin Hong Lee2, and Philip Leong2

1 Institute of Microelectronic Systems
Darmstadt University of Technology, Germany.

{ludewig,soffke,zipf,glesner}@mes.tu-darmstadt.de
and

2 Department of Computer Science and Engineering
Chinese University of Hong Kong, Shatin NT HK.

{kppun,khtsoi,khlee,phwl}@cse.cuhk.edu.hk

Abstract. In this paper we describe a parameterizable FPGA-based
implementation of a sigma-delta converter used in a 96kHz audio DAC.
From specifications of the converter’s input bitwidth and data sampling
frequency, VHDL generic parameters are used to automatically generate
the required design. The resulting implementation is optimized to use
the minimum internal wordlength and number of stages. We prototyped
the converter on an FPGA board for verification purposes and the results
are presented.

1 Introduction

With recent improvements in the density of field programmable gate array
(FPGA) devices, systems with an increasingly higher level of integration are
possible. Digital signal processing is an important application area for FPGAs
and such systems often require data converters to provide analog outputs from
digital domain representations. Sigma-delta modulator based digital to analogue
converters (DAC) can be efficiently implemented on FPGA devices since they
are entirely digital. Including such converters in the FPGA provides a high de-
gree of flexibility and reduces costs and time to market. Moreover, it becomes
possible to develop single chip, customized converters which are not available
commercially, e.g. an application may require a mix of different converters of
different orders operating at different frequencies. Including such converters into
the FPGA provides a high degree of flexibility and reduces costs and time-to-
market. In this paper, a flexible sigma-delta converter for an audio frequency
DAC as proposed in [1] is described. It is modeled as a parameterizable IP core
description which can be used to generate the actual implementation of convert-
ers accepting 16-, 20-, and 24-bit input values at data sampling rates between
32 and 96 kHz. Compared with the design in [1] which was made in Handel-C,
the IP core presented in this paper is more modular, automatically determines

the required internal bitwidths to avoid overflow, is written entirely in VHDL
and is approximately two times faster yet occupies less resources.

The paper is structured as follows: Section 2 describes the basic principle
of operation of Σ∆-converters. The architecture of the implemented DAC is
discussed in Section 3. Section 4 deals with the system-level simulation of the
model and in Section 5 the experimental results of an implemented prototype
are shown. Finally, we end up with some conclusions in Section 6.

2 Basics of Σ∆-Converters

The basic task of a Σ∆-converter is to quantize the input signal, which can
be either continuous or discrete in time. This applies for both the analog-to-
digital and the digital-to-analog conversions. 1-bit quantization is most popular
for simple circuit design [2]. The one-bit signal is perfectly suited as the input
or output of a digital system.

The quantization with one bit resolution can be achieved without signifi-
cant quality loss, by oversampling the signal by a factor of M and shifting the
quantization noise to high frequencies where no signal frequency components are
present. This is usually referred to as noise shaping.

The signal and the noise can then be separated with a lowpass filter of the
appropriate order. This lowpass works in the digital domain for analog-to-digital
converters and in the analog domain for digital-to-analog converters. As this
paper deals with a digital-to-analog converter we will focus our considerations
on this type, but the basic theory can be applied for both types.

Figure 1 shows a simple Σ∆-converter which accepts a discrete time, con-
tinuous value input signal and outputs a discrete time, discrete value output
signal with one bit resolution shifting the quantization noise to high frequencies.
For the analysis of this Σ∆-converter a linearized model can be constructed as
shown in Figure 1(b) by replacing the quantizer by an injection of additive noise.
The output Y (z) is the superposition of the input signal X(z) transformed by
the system and the noise signal N(z) also transformed by the system:

Y (z) = Hx(z)X(z) + Hn(z)N(z) , (1)

where Hx(z) denotes the signal transfer function and Hn(z) denotes the noise
transfer function, which can be derived from

Hx(z) =
Y (z)
X(z)

∣∣∣∣
N(z)=0

(2)

Hn(z) =
Y (z)
N(z)

∣∣∣∣
X(z)=0

(3)

This is depicted in Figure 2. From figure 2a we find that

Y (z) = H(z)
(
X(z) − Y (z)

)
, (4)

+
ONE BIT

QUANTIZERX(z) H(z) Y (z)

(a)

+ +X(z) H(z) Y (z)

N(z)

(b)

Fig. 1. Simple discrete time Σ∆-converter quantizing continuous value input signals
with one bit resolution (a) and a system theoretic model of it with the quantizer
replaced by additive noise injection (b).

which finally yields the signal transfer function Hx(z):

Hx(z) =
Y (z)
X(z)

=
H(z)

1 + H(z)
. (5)

Using the same procedure we also find the noise transfer function Hn(z) from
figure 2b:

Y (z) = N(z) − H(z)Y (z) (6)

⇒ Hn(z) =
Y (z)
N(z)

=
1

1 + H(z)
. (7)

An integrator is used for H(z) to implement the first order noise shaping. To
avoid an algebraic loop due to the feedback in the Σ∆-converter, the integrator
is chosen to have no direct feedthrough. Thus, it can be described in the time
domain by

yn = yn−1 + xn−1 . (8)

Transforming this difference equation in the z-domain yields the transfer function
H(z):

Y (z) = z−1Y (z) + z−1X(z) (9)

⇒ H(z) =
Y (z)
X(z)

=
z−1

1 − z−1
. (10)

+X(z) H(z) Y (z)

(a)

+

-1

H(z) Y (z)

N(z)

(b)

Fig. 2. Models for deriving the signal transfer function Hx(z) (a) and the noise transfer
function Hn(z) (b).

This finally gives the Σ∆-converter depicted in Figure 3 with the transfer func-
tions for the signal and the noise:

Hx(z) =
z−1

1−z−1

1 + z−1

1−z−1

= z−1 (11)

Hn(z) =
1

1 + z−1

1−z−1

= 1 − z−1 . (12)

+
ONE BIT

QUANTIZER+X(z) 1
z

Y (z)

Fig. 3. Σ∆-converter with H(z) = z−1

1−z−1 .

These transfer functions are depicted in Figure 4. As intended, the quantiza-
tion noise is shifted to high frequencies, so that an analog lowpass at the output
will suppress this noise and reconstruct the input signal.

Note, that the noise transfer function Hn(z) is a first order highpass. Thus,
the slope will be only 20 dB per decade. This can be improved furthermore by
increasing the order of the Σ∆-converter as outlined in the next section.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

0

10

Normalized Frequency f
fNyquist

Normalized Frequency f
fNyquist

M
a
g
n
it

u
d
e

(d
B

)

M
a
g
n
it

u
d
e

(d
B

)

|Hx(z)| |Hn(z)|

Fig. 4. Signal and noise transfer function of the Σ∆-converter depicted in Figure 3.
As intended, the quantization noise is shifted to high frequencies.

3 Implementation of Σ∆-Converter

The Σ∆-converter can be used within a complete audio DAC as proposed in [1].
The structure of such a DAC is shown in Figure 5. It consists of the interpolator,
the sigma-delta modulator, and the 1-bit DAC. The audio DAC accepts PCM
input data at sampling rates of 32/44.1/48/88.2/96 kHz. The interpolation ratio
of the interpolator can be configured to 64x, 128x, and 192x. For 44.1/88.2 kHz
input signals, the interpolator gives the output data rate of 5.6448 MHz by
setting the interpolation ratio as 128x/64x respectively. For 21/48/96 kHz input
signals, the interpolator gives the output data rate of 6.144 MHz by setting the
interpolation ratio as 192x/128x/64x respectively.

fclock =
5.6448MHz/
6.144MHz

64x/128x/192x
Interpolator

3rd/5th Order
Sigma Delta
Modulator

PCM input @
44.1kHz/88.2kHz/
32kHz/48kHz/96kHz

1-bit
DAC

to analog lowpass

Fig. 5. Block diagram of the audio DAC.

The configurable Σ∆-converter proposed in this paper can be freely config-
ured and can be used for the Σ∆-converter of the complete audio DAC. Our

approach to create a soft core which is based on a VHDL description that can
be configured to produce a Σ∆-converter of arbitrary order.

++ + ++

+ + + +++

ONE BIT

QUANTIZER

X(z)

Y (z)

1
z

1
z

1
z

1
z

1
z

b1 b2 b3

b4b5b6

a1 a2 a3

a4a5

c1 c2 c3

c4c5

Fig. 6. Σ∆-converter architecture of the Σ∆-converterṪhe stages are generated using
a for-generate-loop, so the number of stages can be adapted to the desired signal-to-
noise-ratio.

As a starting point we used the architecture (see Figure 6) as proposed [1] for
the Σ∆-converter which can be configured as either 3rd order and as 5th order
modulator. The modulator coefficients were designed by using a Matlab tool-
box [3].As it can be clearly seen the modulator is composed of two basic blocks
(see Figure 7). Each of the two basic blocks is composed of a register for the
delay and 3 multipliers. In VHDL, the constants an, bn, cn can be specified as a
generic for every block separately. Everything is combined to the final architec-
ture in the top-level design that uses a generate-loop to create a Σ∆-converter
of the specified order.

While the system level simulation uses floating point numbers, a fixpoint
implementation had to be derived for the FPGA realization. For a Σ∆-converter
with a bitwidth of n at the input, the parameters of the stages have to be scaled
by 2n−1 −1. Due to the integrating nature of the delay stages, it is not sufficient
to use n as internal bitwidth. So the number of bits in the middle section of each
stage (adder, delay and multiplication with cn) must to be increased to avoid
overflows.

As the VHDL description of the model is fully generic, a Σ∆-converter IP-
core of the desired order can be generated very easily by changing the value

++

X(z)

Y (z)

1
z

an

bn

cn

(a)

+ +

X(z)

Y (z)

1
z

an

bn

cn

(b)

Fig. 7. Basic stages of Σ∆-converter

of the generics. The design parameters like the number of stages, the fixpoint
bitwidth, the internal bitwidth and the converter coefficients are specified in a
single configuration file.

4 System-Level Simulation

System level simulations were conducted using Matlab Simulink. Figure 8(a)
shows the output spectrum for the 5th order configuration of the DAC, given a
20.48 kHz sinusoidal input signal (at the upper edge of the audio band), sampled
at 96 kHz. It is then interpolated to a 6.144 MHz sampling rate using a two-
stage sinc interpolator. The quantized 1-bit output of the sigma-delta DAC is
then passed through an FFT to obtain the output frequency spectrum. The
fifth-order noise shaping function is clearly observed. The audio-band SNR for
this simulation is 138 dB. Figure 8(b) shows the output SNR versus the input
signal level. From this figure, a maximum SNR of 140dB is obtained from the
formula:

Effective number of bits (ENOB) =
SNR − 1.76

6.02
,

so this DAC configuration can operate on inputs with word lengths of up to 23
bits. The SNR performance versus input SNR for the 3rd order configuration of
the DAC is shown in Figure 9. The maximum SNR is 96.4 dB, which corresponds
to an ENOB of 15.7 bits. The system-level simulations verify the correctness of
the DAC architecture.

5 Experimental Results

The complete design has been prototyped using an FPGA board with a XILINX
XC2V1000-4 Virtex II FPGA. In order to produce some reasonable output, a
24-bit look up table containing one period of a 10 kHz sine wave sampled at

(a)

(b)

Fig. 8. System level simulation results for the 5th order configuration of the DAC. (a)
output spectrum (b) output SNR versus input level.

Fig. 9. Output SNR versus input level for the 3rd order configuration of the DAC.

6 MHz has also been mapped on the FPGA to provide a periodic input signal
for the Σ∆-converter. In some designs (like in [1]) the cn parameters of the Σ∆-
converter are set to one so that the corresponding multipliers can be omitted. We
have optimized our generic VHDL model so that the multipliers with a coefficient
of one are automatically left out.

Table 1 shows the implementation details of our design. For a comparison
with the results from the Handel-C implementation of [1] the first two values
show the hardware resources and the maximum clock frequency for a coefficient
set with cn = 1. The other values are for a Σ∆-converter with all coefficients
not equal to 1.

Table 1. Details of the implementation of a 5th order Σ∆-converter with 24 bit input

Design Slices Multipliers max. Clock

5th order SD (cn = 1) 362/5120 20/40 51 MHz

5th order SD with LUT (cn = 1) 967/5120 20/40 27 MHz

5th order SD (cn �= 1) 566/5120 39/40 19 MHz

5th order SD with LUT (cn �= 1) 1163/5120 35/40 16 MHz

It can be clearly seen that all the implementations meet the required 6 MHz
operating frequency. Furthermore, using the cn = 1 case for comparison with [1],

this design uses the multipliers of the Virtex II device in order to achieve a
large reduction in slice utilization (362 compared with 3167) as well as a higher
operating frequency (51.7 MHz compared with 27 MHz). Even in the case of
cn �= 1, only a modest number of slices are required. When synthesizing the
design without the multipliers of the Virtex II device we also achive a lower slice
utilization of 2757 compared to 3167 of the Handel-C approach (for cn �= 1).

To validate our implementation the spectrum of the output signal of the
VHDL implementation was compared with the spectrum generated by the sys-
tem level simulation. Furthermore we connected an analog low pass filter to the
FPGA output and observed a very smooth and stable sine wave with a frequency
of exactly 10 kHz.

6 Conclusions and Future Work

A Σ∆-converter-IP-core has been presented, that can be adapted easily to dif-
ferent requirements. This adaptation includes the selection of the bitwidth of
the input signal and of the internal signals, the configuration of the coefficients
and the Σ∆-converter core can be generated with an arbitrary number of stages.
Additionally we included some automatic optimizations to remove unnecessary
hardware (like a multiplication with one). With our VHDL Σ∆-converter-core
we achieved much better results than with the Handel-C implementation.

The Σ∆-converter has been studied using simulink and both the system
level simulation and the RT-level simulation results have been presented. The
model has been prototyped on an FPGA board and the reconstructed sine wave
generated by a LUT which has been also mapped onto the FPGA, could be
observed using an simple analog low pass filter.

The next step is to replace the LUT with an interpolator in order to provide
the required oversampling. Then the output of some conventional digital signal
processing block (e.g. a MP3 decoder or a S/PDIF-receiver) can be used as
input of the interpolator. Then it will be possible to listen to the output of the
Σ∆-converter and judge the quality subjectively.

References

1. Ray C.C. Cheung and K.P. Pun and Steve C.L. Yuen and K.H. Tsoi and Philip
H.W. Leong An FPGA-based Re-configurable 24-bit 96kHz Sigma-Delta Audio
DAC. FPT 2003, Tokyo, Japan.

2. Gabor C. Temes and Shaofeng Shu and Richard Schreier Architecture for Sigma
Delta DACs, in Delta Sigma Data Converters, edited by S.R. Norsworthy, et al,
IEEE Press, 1997.

3. Richard Schreier, http://www.mathworks.com, MATLAB Central > File Exchange
> Controls and Systems Modeling > Control Design > delsig.

