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Methods for spherical data analysis and visualization
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Abstract

A systematic analysis of the localization of objects in extra-personal space requires a three-dimensional method of documenting
location. In auditory localization studies the location of a sound source is often reduced to a directional vector with constant
magnitude with respect to the observer, data being plotted on a unit sphere with the observer at the origin. This is an attractive
form of data representation as the relevant spherical statistical and graphical methods are well described. In this paper we collect
together a set of spherical plotting and statistical procedures to visualize and summarize these data. We describe methods for
visualizing auditory localization data without assuming that the principal components of the data are aligned with the coordinate
system. As a means of comparing experimental techniques and having a common set of data for the verification of spherical
statistics, the software (implemented in MATLAB) and database described in this paper have been placed in the public domain.
Although originally intended for the visualization and summarization of auditory psychophysical data, these routines are
sufficiently general to be applied in other situations involving spherical data. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

While science is arguably based upon observation
statement, even relatively unsophisticated analysis of
simple data involves assumptions. This is often only
implicit in the analytical or statistical methods em-
ployed in analysis. Another subtle form of analytical
assumption is often buried in the methodology em-
ployed in visualizing the data. Although graphical data
representation has a long history (Tufte, 1990), the
growing availability of inexpensive and powerful com-
puters has resulted in renewed interest in data visualiza-
tion as a form of analysis for complex or large data
sets. One area in neuroscience where data sets can be
both large and, from an analytical perspective, fairly
complex, is in the representation of extra-personal

space and how an animal or individual relates to that
space in some meaningful way.

In our laboratory we have been examining how the
mammalian nervous system processes auditory infor-
mation to generate a neural representation of space that
results in our perceptions of the auditory world. In its
simplest form, we refer to the location of an auditory
object (a sound source) in terms of its direction and
distance from the observer. As the observer occupies a
point in space, the representation and analysis of these
data involve at least three spatial dimensions and then
a number of other dimensions related to the nature of
the signal (e.g. frequency and time) and the experimen-
tal manipulation (the independent variables). The most
common form of experiment is the placement of a
sound source at an unseen location in space and an
indication by the subject of the location of the target.
The disparity between the indicated and actual location
of the auditory target is used as a measure of the
localization accuracy of the subject, and we use the
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term ‘error’ in this paper to describe this value. The
analysis of these data generally concentrates on the
directional vector of the auditory object and, in most
cases, ignores the distance effects. Under this assump-
tion the representation of these data reduces to a more
tractable two-dimensional spherical display of the data.
Furthermore, the plotting and manipulation of spheri-
cal data in real time makes this form of analysis
attractive since the complex spatial relations in the data
can be easily apprehended as the viewpoint is rotated.
Indeed, this is one of the principal advantages of visual-
ization of complex data sets.

Previously, there has been a range of methods ap-
plied to the summary description and statistical analysis
of these data. For example, Oldfield and Parker (1984)
used simple X–Y plots of error verses target position
and shaded contour plots of the errors on an azimuth/
elevation grid. Wightman and Kistler (1989) used X–Y
source position versus perceived position plots; and
Makous and Middlebrooks (1990) used ellipses drawn
on a double pole spherical plot where the size of the
major and minor axes were proportional to the signed
errors in the vertical or horizontal directions. All of
these representations involve separate analysis of the
azimuth and elevation components of the data, such as
calculating the variance of the azimuth and elevation
localization errors for each target location in space.

This approach does not account for some features of
these data since azimuth and elevation are likely to
covary. We have applied the Kent distribution (Kent,
1982) instead of the commonly used Fisher distribution
(described in Fisher et al., 1993) to analyze these spher-
ical data. The Fisher distribution assumes that the data
is rotationally symmetric whereas the Kent distribution
can be used to model asymmetric data. Such an ap-
proach is more likely to expose the coordinate system
used by the auditory central nervous system to repre-
sent auditory extra-personal space. This is an important
methodological step as it allows the comparison of
localization performance in individuals or groups to be
compared with the spatial variation in their auditory
spatial cues to a sound’s location. Such an approach
provides insights into the processing strategies em-
ployed by the auditory system in computing and repre-
senting the spatial locations of sound sources (see
Carlile, 1996, for review). In considering these issues we
have also sought to apply a number of robust statistical
methods to the auditory localization data collected in
our laboratory and to combine these with a convenient
set of visualization tools. We have collected together
many of the relevant statistical methods and describe
here a library of data manipulation, plotting, summary
statistical procedures and routines for hypothesis test-
ing using spherical data. These methods have been
developed using MATLAB (The MathWorks, Inc.), a
popular data analysis and visualization package and

have now been made available as public domain soft-
ware. This small library, called Spak (for ‘spherical
package’), provides a flexible set of tools for manipulat-
ing and processing spherical data (Spak is freely avail-
able upon request from the authors, or via the World
Wide Web site http://www.physiol.usyd.edu.au/simonc/
). It is hoped that, by providing a common resource for
the analysis and interpretation of these complex data
sets, a greater consistency in approach will be encour-
aged and thus facilitate more rigorous comparisons
between studies in this area. Although these routines
were developed to serve the requirements of the re-
search community examining auditory localization, the
routines are sufficiently general that they could be
employed in other research areas using spherical data
(e.g. astronomy, geodesy, geology, geophysics and
mathematics; see Fisher et al., 1993).

2. Methods

2.1. Spherical coordinate system

The quantitative description of spherical data is de-
pendent on the definition of a particular spherical coor-
dinate system. A number of systems are in general use
(Fisher et al., 1993). The two most common in the
auditory literature are a single pole system (analogous
to the planetary coordinate system), and a double pole
system which shares the longitudinal circles of the
single pole system (denoting the elevation of a source)
but has an orthogonal series of circles centered on the
interaural axis. As these two systems share the nomen-
clature of azimuth and elevation, it is essential that,
when reference is made to spherical data, the spherical
coordinate system is always explicit. Unhappily, this
has not always been the case in the auditory literature
and has led to some confusions. We have selected the
single pole system since it is more intuitive (see Carlile,
1996, for discussion).

A two-dimensional, single pole spherical coordinate
system was used to describe points on a unit sphere
centered about the subject’s head. A point directly in
front corresponds to zero azimuth and zero elevation.
The azimuth coordinate (az) increases in a clockwise
direction from the subject’s head and elevation (el)
increases in an upwards direction (see Fig. 1). This
coordinate system will be referred to as ‘hoop coordi-
nates’ since it corresponds to the coordinates used in
our laboratory by the automated robot arm in placing
the auditory stimulus on an imaginary sphere surround-
ing the subject. This coordinate system is commonly
used in auditory localization literature and positions on
the sphere are represented as the ordered pair (az, el). It
should be noted that this particular choice of coordi-
nate system restricts the analysis to data lying on the
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Fig. 1. The double pole coordinate system (a) compared with the (single pole) hoop coordinate system (b).

sphere, and in particular, does not give a measure of
distance (which would be the third dimension). One
way in which this method could be used to display
distance data would be to use surface color to indicate
distance, however, this is not explored here.

Although, by convention, hoop coordinates are al-
ways used in our software to describe positions in
space, it is often mathematically more convenient to
perform calculations in polar coordinates (u, f). To
convert between the coordinates, the following formu-
lae were used:

u=90−el f= −az

2.2. Mean direction

In order to calculate the mean direction of a set of
points on the sphere, it is not sufficient to average the
azimuth and elevation values since the hoop coordinate
system is discontinuous. A simple averaging of points
at hoop coordinates (0, 0) and (359, 0) would give the
undesirable value of (179.5, 0).

Instead, the mean direction (u( , f( ) of a set of n data
points Pi (= (ui, fi)) was computed by firstly finding
the Cartesian coordinates (also known as the direction
cosines) (xi, yi, zi) using the formula (Fisher et al.,
1993):

xi=sin ui cos fi, yi=sin ui sin fi, zi=cos ui

The vector sum of the unit vectors OPi (O is the
origin) is then computed:

Sx= %
n

i=1

xi, Sy= %
n

i−1

yi, Sz= %
n

i=1

zi

The mean direction has a resultant length of:

R=
S2
x+S2

y+S2
z

Since our spherical coordinate system only allows
unit length vectors, the resultant length can be used as
a measure of dispersion (Wightman and Kistler, 1989).
R can range between 0 and n, with a large value
corresponding to low dispersion, and small values cor-
responding to increasingly uniform distributions of the
data on the sphere.

For the direction cosines:

(x̄, ȳ, z̄)= (Sx/R, Sy/R, Sz/R)

These can be converted into polar coordinates using
the following formulae:

u=arccos(z̄), f=arctan(ȳ/x̄)

2.3. Kent distribution

Localization errors can be analyzed using the Kent
distribution (Kent, 1982, Fisher et al., 1993)1 which can
deal with asymmetric data. Using this method of mod-
eling, no assumptions are made about the distribution
of the data. The Kent distribution is a generalization of
the Fisher distribution which assumes that the data is
unimodal and has rotational symmetry. As can be seen
in Fig. 2 (extracted from the same data set as Fig. 3),
the top set of data points has a much wider variance in
the azimuth direction thus leading to an ellipse shape
(so is best described using the Kent distribution),
whereas the bottom set of data is much more circular
since the data is almost rotationally symmetric and can
be described by a Fisher distribution.

1 The 1987 edition of Fisher et al. had some errors in the sections
detailing the computation of the Kent distributuion. The 1993 paper-
back edition corrected these (some in the text and some in the errata).
We have verified with the authors that there is a final minor mistake
in Example 5.28, but such elliptical confidence cones are not used in
our software. Instead, we use the standard deviation which is propor-
tional in size to the elliptical confidence cone.
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The Kent distribution is described by the parameters
G, k and b, where G is a 3×3 matrix containing the
three 3×1 column vectors (j1, j2, j3). j1 is the mean
direction of the distribution, j2 is the direction in which
the data density is the highest (major axis), and j3 is the
direction of least data density (minor axis). It is most
convenient to think of G as being the rotation matrix
which best aligns the mean direction to the ‘north pole’
(i.e. (0, 0, 1) in Cartesian coordinates) of the sphere,
with the principal components aligned with the (u, f)
axes, the ‘principal components’ of a dataset being the
set of M orthogonal vectors in that space that account
for the maximum amount of variance in the data;
found using principal component analysis—or the
Karhunen–Loève transform as it is otherwise known
(see e.g. Jolliffe, 1986). The k parameter describes the
degree of concentration of the data about the pole of
the distribution, and b is an ovalness parameter which
is small for circular data and increases as the data
becomes more ovoid. Using the shape parameters k and
b, unimodal distributions, (k/b)]2, can be distin-
guished from bimodal distributions, (k/b)B2.

Estimates of the parameters of the Kent distribution
(Fisher et al., 1993) can be computed for n data points
(ui, fi) in polar coordinates (with corresponding direc-
tion cosines (xi, yi, zi), resultant length R and mean
direction (u( , f( ) using the following formulae:
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B=H%(T/n)H

If the elements of B are represented as:
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then we define c=1
2arctan[2b1 2/(b1 2−b2 2)] and

compute the rotation matrix:
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The matrix V, calculated by:

V=G%(T/n)G

has elements:
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and if we define Q=n1 1−n2 2, using this and the
resultant length, we can calculate the shape parameters:
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The parameters (G, k, b) describe the Kent

distribution.
The Kent distribution can be used to determine

whether a sample comes from a Fisher distribution as
opposed to a Kent distribution using the following test
statistic:

K=
n(1

2k)2I1/2(k)Q2

I5/2(k)

where I1/2(k) and I5/2(k) are modified Bessel func-
tions of the first kind. The hypothesis that the data
comes from a Fisher distribution rather than a Kent
distribution is rejected at the 100a% level if K\−

Fig. 2. This figure shows two data sets which are shown as ‘�’ (on
top) and ‘× ’ (on bottom). The ‘× ’ data is rotationally symmetric
and follow a Fisher distribution (notice how the ellipse fitted to the
data is circular). The ‘�’ data is better modeled by the more general
Kent distribution. The Kent distribution need not be rotationally
symmetric and the major and minor axes of the ellipses drawn are
aligned with the directions of greatest variance in the data.
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Fig. 3. Spherical plot showing major and minor axes of the data variance obtained using the Kent distribution.

2 log a. For the example shown in Fig. 2, K=9.1 for
the top (Kent) example and K=0.4 for the bottom
(Fisher) example.

In order to obtain the ellipses displayed in Fig. 2 and
Fig. 3, the data were first rotated using the G matrix,
i.e.:
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This procedure aligns the principal components of
the data with the azimuth and elevation axes, centered
about the pole. The standard deviations along the axes
are then calculated and an ellipse about the North pole
with major and minor axes one standard deviation in
size is computed. The ellipse is then rotated back to the
mean position using the G matrix to produce the plot-
ting coordinates of an ellipse centered about the mean
direction with major and minor axes in the principal
directions of data variance.

2.4. Data collection

The aim of these types of experiments is to examine
the accuracy with which a subject can determine the
location of an auditory target or sound source. In our
laboratory the target is placed randomly on the surface
of an imaginary sphere (1 m radius) centered on the
subject’s head using a computer controlled robot arm
(see Carlile et al., 1996). The experiment is carried out
in a darkened anechoic chamber to avoid extraneous
acoustic and visual cues to target location. Following a
short (150 ms) auditory stimulus, the subject is asked to
turn to face the source of the sound and point to it with
their nose. The position of the head is determined using
an electromagnetic tracking device which provides az-
imuth, elevation and roll as well as the translational
position of the head (Polhemus, Isotrack). Following
appropriate training (Carlile et al., 1996) this provides a
reliable and objective measure of the perceived location
of the sound. Overall localization accuracy and the
types of mislocalizations evident under different listen-
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ing conditions and with different auditory targets can
be used to probe localization processing.

2.5. Data manipulation

Although the extraction of data is a relatively trivial
task, we have found that a large percentage of our
previous code involved data manipulation. The simple
interfaces, along with a small set of routines to sort,
select and extract the data have considerably reduced
the complexity of the scripts. As illustrated in Section 3,
very small programs using this library are capable of
implementing complicated procedures.

2.6. Library interface routines

In this section, the Spak routines available to the user
are described. Conventions that are followed in Spak
are that all data selection routines have an ‘–ld’ (local-
ization data) suffix, all spherical routines (statistical and
plotting) have a ‘–sp’ (spherical) suffix, and all conver-
sion routines have a ‘2’ in them (for example, cart2hp
converts from Cartesian to hoop coordinates. For all of
the main library routines (those that have ‘–ld’ or ‘–sp’
suffixes), coordinates are expressed in hoop coordinates
(as described above).

The localization data are assumed to be arranged as
an n×4 matrix where n is the number of points in the
data set and the four columns correspond to source
azimuth, source elevation, and the azimuth and eleva-
tion of the localization estimate, respectively. Typically,
data is extracted and processed one record at a time,
where a record is the k×4 matrix representing all
recordings from a given source location (i.e. all vectors
in the matrix have identical first and second columns).

A summary of the commands available in Spak is
given in Table 1. A very small set of flexible library
routines provides great utility.

3. Results

In this section, we provide examples of the types of
visualizations possible using Spak. A feature of this
software is that very few lines of code are required to
produce visualizations of auditory localization data. All
of the code used to generate the plots in Figs. 3–5 are
given in Appendix A.

3.1. Front–back confusion plots

There are basically two different types of auditory
localization errors. The first type, called ‘local errors’,
are those where the subjects perceive the location to be
within a few tens of degrees of the actual location. The
second type, where the subject correctly identifies the

azimuth angle of the target with respect to the median
plane but makes an error in the hemisphere that the
sound is judged to be located. These are called ‘front–
back confusion errors’, as, for example, where a sound
is located 10 degrees to the left of the frontal median
plane and the subject perceives the location to be say 15
degrees left of the rearward median plane. In our
applications, the latter type of error is relatively infre-
quent (at most a few percent of the total number of
localization judgments in a given study), and results in
a weakly bimodal data set (the Kent distribution analy-
sis routines also check and report on whether the data
is unimodal or bimodal). One approach is to extract the
front–back confusion data (e.g. Makous and Middle-
brooks, 1990) and analyze these data separately (see
Carlile, 1996, for details). The set of routines described
here provide a filter to achieve this (rfb–sp( )). Other
methods used for dealing with front–back confusions
include resolving front–back confusions by reflecting
the perceived location about the interaural axis before
computing descriptive statistics (e.g. Wightman and
Kistler, 1989) or avoid summary statistics altogether by
showing all of the data graphically (e.g. Kistler and
Wightman, 1992). In the latter two cases, routines from

Table 1
Summary of the routines available in Spak

Routine Description

Returns all of the records bound within thesel–ld( )
rectangle defined by two locations on the
sphere
Arranges the data in a canonical form (in-sort–ld( )
creasing in elevation with the azimuth in-
creasing within the same elevation) so that
all data from the same source location are
adjacent

next–ld( ) Returns the next record as well as a copy of
the matrix with the chosen record removed.
The truncated matrix can be used as the
next argument to next–ld( ) to iterate
through all of the data

get–ld( ) Returns the data associated with a particular
location

closest–ld( ) Returns the record with the closest match
(Euclidean distance) to a particular location

rfb–ld( ) Remove front–back confusions associated
with localization data

amov–sp( ) Translate the points specified by the second
parameter by the amount specified in the
first parameter

mean–sp( ) Computes the centroid of a record
median–sp( ) Computes the median of a record
kent–sp( ) Compute the Kent distribution parameters

of a record
draw–sp( ) Draw a sphere

Draw a polygon which connects the pointsline–sp( )
given as input arguments

plot–sp( ) Draw dots at each point given in the input
matrix
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Fig. 4. Plot showing front–back confusion information on an X–Y plot.

the Spak library could be employed along with stan-
dard MATLAB functions to filter the data appropri-
ately before plotting.

The front–back confusions can be visualized using
plots of Fig. 4 (Makous and Middlebrooks, 1990), the
file ‘testfb.m’ in Appendix A showing the code used to
produce the plot. The code uses the sample psycho-

physical data contained in the file ‘bigloc.asc’ and the
processing shows the results of extracting out the
front–back confusion data in the data set and plotting
these on an X–Y plot where elevation has been col-
lapsed. The extracted data is shown by the filled circles
and the remaining data is plotted as small crosses.
Lines 6 and 9 extract the local errors and the front–
back confusion data, respectively, which are plotted on
lines 12 and 14. The other lines of code are used to load
the data and to annotate the plot, and are standard
MATLAB commands.

3.2. Directional line plots

Directional line plots can be used to visualize the
directions of the principal components of the errors.
The file ‘testdl.m’ in Appendix A (line 24) produces the
plot of Fig. 5. The kent–sp( ) routine is called to
compute the direction of the principal components (line
43), and then a line through the origin, which points in
the direction of the first principal component and has
length proportional to the standard deviation is com-
puted using the amov–sp( ) routine (line 46) and plot-
ted on line 47. Lines 38–40 and 50–51 perform a
typical loop which iterates through all the data, one
location at a time, and this type of loop is explained in
greater detail in the next section.

Fig. 5. Directional line plots which show the directions of principal
components of the data.
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On the resulting plot, if the errors are aligned with
the coordinate system (as has been generally assumed in
previous analyses), they will appear predominantly
aligned with the vertical and horizontal axes, but in the
case of the example in Fig. 5, this is clearly not the case.

3.3. Spherical plots showing kent distribution

As a final example of the analysis and visualization
possible using Spak, the MATLAB program which is
shown in file ‘testkent.m’ of Appendix A is described in
this section, producing the plot shown in Fig. 3. The
program analyses each record using the kent–sp( ) rou-
tine, and makes an ellipse centered around the centroid
(i.e. the mean direction) of the measured results. A line
is drawn between the centroid and the source location,
and an ellipse with major and minor axes aligned with
the principal components and with a size of one stan-
dard deviation on each axis is drawn. If the data fits a
Fisher distribution (i.e. it is rotationally symmetric in
nature), this ellipse is drawn with a dotted line, other-
wise, it must be a Kent distribution and it is drawn in
a solid line.

On line 57, the matrix which describes the experimen-
tal data is loaded. This is typical of the data resulting
from a series of psychophysical experiments. The sub-
routine akent( ) is called with arguments describing the
location of the data of interest, and all of the processing
is done in this routine. Note that, to do the ‘back’ plot
of Fig. 3, akent( ) needs to be called twice (lines 67 and
68) to account for the fact that our coordinate system is
discontinuous for this projection and we must therefore
do the left and then the right projections separately.
The akent( ) routine, which starts on line 76, begins by
using sel–ld( ) to remove the data which will not be
used for a particular projection. The data is then sorted
to put it into a canonical form (line 81). Each record is
then extracted using next–ld( ) (lines 86 and 98) which
puts the record in ‘dat’ and the truncated data set in
‘sloc’.

The routine kent–sp( ) does all of the statistical work
used in this example. This routine is called with the
experimental data only (extracted using the MATLAB
expression dat(:,[3 4])), and returns G, kappa, beta, q,
ellz, ell, ln and isk. G, kappa, beta and q correspond to
the Kent parameters G, k, b and Q described earlier,
the two element vector ellz contains the sizes of one
standard deviation along the principal components, ell
contains a vector which if joined together forms an
ellipse of size one standard deviation, and with the
major and minor axes aligned with the principal direc-
tions of the data errors, ln contains a vector of points
making a line from the source location to the centroid,
and isk being a boolean flag which is set if the data
comes from a Kent distribution and zero if it is
Fisherian.

On line 60, the output is set to be in landscape
mode, and the current figure is cleared on line 61.
Line 63 indicates that we wish to make 4 plots ar-
ranged in a 2×2 grid, and the first graph is selected.
The akent( ) routine is then called which will draw a
sphere and plot the data on the first graph. The
above procedure is repeated for the back, left and
right plots.

The akent( ) routine firstly draws a sphere if dosp is
set (line 82–84). The condition is required to avoid
drawing two spheres when akent( ) is called twice for
the same projection on lines 67–68. The view is then
changed to that the location specified in the vcoord
parameter becomes the center of that projection. Since
the coordinates are assumed to be in hoop coordi-
nates, they must first be converted to Cartesian coor-
dinates for the MATLAB view( ) function.

Depending on the value of isk, ecol can be set to
different line styles in lines 90–94. On line 95, a dot
is drawn at the centroid of the data. A line is drawn
from the source location to the centroid on line 96,
and the ellipse is drawn with plotting parameter ecol
on line 97.

The size of the ellipses in plots thus generated gives
a good summary of auditory localization perfor-
mance; the shape gives indications as to the relative
contributions of the principal components; the orien-
tation of the ellipse shows the alignment of the direc-
tions of greatest variance and the lines from the
source locations to the centroid give an indication of
the absolute errors of an auditory localization trial.
We have found that this type of plot gives a very
good summary of the performance of an experiment
in auditory localization.

4. Discussion

This paper documents the implementation of routines
for data management, visualization and the statistical
description of spherical data. In an effort to maximize
the utility of these routines we have a exploited a very
widely used data visualization and analysis package
(MATLAB). The data management features of this
package facilitate the efficient manipulation of large
amounts of spherical data (\104 data points). Data
can be sorted and that associated with particular loca-
tions, or a range of locations can be extracted. Consid-
erable effort has gone into implementing routines that
represent a single functional step to provide the widest
range of utility for each routine. Complex analytical
sequences can be assembled with just a few lines of
script.

A consistent set of coordinate conversion routines
allows seamless movement from the popular single pole
description of spatial location used in auditory research
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to spherical coordinates and also to the Matlab plot-
ting coordinates. The coordinates conversion routines
are integrated into plotting routines so that the user
only has to operate in the ‘native’ single pole descrip-
tions of spatial location. The visualization routines
exploit the three-dimensional plotting capabilities of
MATLAB and could be integrated into an interactive
user interface that is also available with MATLAB.
Although these routines have been originally written
to facilitate the analysis of auditory localization data
they are sufficiently generalized to be applied to any
spherical data set. At most, a user may have to write
small MATLAB script to convert the coordinate sys-
tem used by their own data to a spherical coordinate
system to make available the full functionality of this
package.

As illustrated using the sample data set in Fig. 2,
the distributions of localization errors for many spa-
tial locations are not rotationally symmetrical and are
better described using an ellipse. The axes of the el-
lipse correspond to the first two principal components
and, for a significant fraction of the data, the axes are
not aligned with the axis of the coordinate sphere.
This is most clearly seen in the directional line plots
(Fig. 5) introduced in this paper. Summary statistics
computed using the directions of the principal compo-
nents can lead to more revealing information than
either analyzing the azimuth and elevation axes inde-
pendently, or combining them and assuming rota-
tional symmetry. Similar kinds of spherical analysis of
the underlying cues to sound location will indicate to
what extent the characteristics of the error distribu-
tions are dependent on the nature of the spatially
dependent changes in the cues to locations.

In the previous studies of auditory localization pro-
cessing at least two coordinate systems have been
used in describing spatial location (single pole and
double pole). A lack of a standard method for repre-
sentation and analysis has resulted in enormous
difficulties in comparing the results of different studies
in this area. It is hoped that researchers will be able
to use this package to analyze and display results
from their own experiments and hence facilitate a
greater uniformity in the presentation and analysis of
data in this and related research fields.
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