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Abstract—Health status monitoring of flight-critical sensors is crucial to
the flight safety of unmanned aerial vehicles (UAVs). While many flight
data anomaly detection algorithms have been proposed, most do not con-
sider data source information and cannot identify which data sources con-
tribute most to the anomaly, hindering proper fault mitigation. To address
this challenge, a structured sparse subspace learning anomaly detection
(SSSLAD) algorithm which reformulates anomaly detection as a struc-
tured sparse subspace learning problem is proposed. A structured norm
is imposed on the projection coefficients matrix to achieve structured spar-
sity and help identify anomaly sources. Utilising an efficient optimization
method based on Nesterov’s method, and a subspace tracking approach
considering temporal dependency, the computation is efficient. Experi-
ments on real UAV flight data sets illustrate that the proposed SSSLAD al-
gorithm can accurately and quickly detect and identify anomalous sources
in flight data, outperforming state of art algorithms, both in terms of accu-
racy and speed.

Index Terms—Anomaly detection, subspace learning, interpretability,
structured sparse, unmanned aerial vehicle.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are equipped with
flight-critical sensors to monitor the surrounding environ-

ment. Sensor readings are interpreted as beliefs upon which the
UAV decides how to act. Unfortunately, even with pre-flight
certification, sensor faults can cause the controlling software to
perceive the environment incorrectly, and in turn make deci-
sions leading to task failure [1]-[4]. For example, some faults in
the sensors of determining the aircraft’s altitude, might lead to
a stall and then a crash [5]-[8]. Consequently, there is an urgent
need to continually monitor the health of flight-critical sensors
[1]-[9]. Upon detecting an issue, appropriate mitigation actions
can be triggered in a timely manner.

Faults and failures in flight-critical sensors are expressed as
anomalies in the flight data. The challenge is to create an accu-
rate anomaly detection algorithm that can identify abnormal be-
haviour [10]. Furthermore, for successfully healthy status moni-
toring, mere detection of anomalies is not sufficient. Algorithms
should be able to provide additional interpretable information,
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such as the sources responsible for the anomaly. In addition,
anomaly sources in flight data are required to be identified with
minimal latency for usage in a control loop.

The properties of the data are crucial to the design of an
anomaly detection algorithm [4],[6],[10]-[15],[19]-[23]. Flight
data are received in a streaming fashion and multidimensional.
In practice, the cost of manually identifying anomalies means
that often, only a limited amount of labelled flight data are avail-
able. This motivates unsupervised operation in which labelled
training data are not required. On the other hand, the health of a
sensor cannot be established independently. Only by taking into
account information (e.g. dependency) from other sources can
a reliable result be obtained [1]-[3], [6],[7]. Existing time-series
anomaly detectors can be roughly divided into two approaches:
temporal and spatial [10],[11],[14]-[22],[24].

The temporal approach assumes that flight data streams adja-
cent in time are more likely to be similar. These would appear
as linearly dependent columns in the flight data stream matrix
[3],[15]. Many temporal anomaly detection algorithms have
been proposed [10],[11],[14],[20],[22]. Especially for flight
data anomaly detection, Eliahu Khalastchi et al.[3] defines a
distribution which compares the Mahalanobis distance between
new n-dimensional flight data to earlier data in terms of standard
deviations. Outliers are identified as those having large Maha-
lanobis distance from previous data storing in a sliding window.
He et al. [15] assume that subspace directions might extract
most information of flight data distribution. And the presence of
anomalous data will lead to the deviation of flight data subspace
directions. Then anomalies are determined according to the an-
gle variation in angle of the resulting direction. The temporal
oriented algorithms reviewed above perform well for detecting
overall change of real-time multidimensional data at adjacent
timestamps. However, to take appropriate mitigation actions,
rather than simply detecting overall change, it is also of signif-
icance to provide additional interpretable information (e.g. the
sources that are most responsible for anomaly) in an anomaly
detection algorithm.

Flight data also present spatial dependencies which mean
similar evolutions often occur between specific flight parame-
ters, making corresponding rows of flight data stream matrix
correlated. Considering spatially dependent properties, data
sources information can be preserved [14],[16]-[19],[24]. In
this manner, a number of interpretable algorithms have been
presented which identify the sources that contribute most to
the anomaly, such as stochastic nearest neighbours based [16],
graph based [17], joint sparsity based [18]. Unfortunately, most
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algorithms are not designed for online UAV applications which
have highly dynamic data stream and stringent real-time con-
straints. For instance, Tsuyoshi Ide et al. [16] propose a neigh-
bourhood graph where each node corresponds to a time series,
and each edge is weighted by the (dis)similarity between a pair
of time series. The anomaly score of the i-th source is deter-
mined by the change in the k-neighbourhood graph around the
i-th node. However, as UAV flight data have a complex dis-
tributions (e.g., multi-clustered structure), the k-neighbourhood
graph will result in determining improper neighbours, thus
anomaly sources cannot be correctly identified. Besides, the
neighbourhood graph of each source must to be constructed at
each time interval, making real-time implementations challeng-
ing. Therefore, those interpretable algorithms take much more
computation time to get anomaly sources, making it less suit-
able for real-time UAV applications.

In summary, to enhance the interpretability of flight data
anomaly detection, identifying the sources that are most respon-
sible for anomaly is still a challenge. Besides, anomaly detec-
tion of flight data needs to be done in real-time, and latency
is critical when used in a control loop. Taking spatio-temporal
dependencies into account, multidimensional flight data can be
approximated in a lower dimensional subspace. Thus, subspace
learning based methods are favored their reduced computational
requirements [10],[25]-[29]. One major disadvantage of tradi-
tional subspace learning methods is that the learned subspace
projection matrix is a linear combination of all the original fea-
tures [25]-[30]. This mixed nature of subspace makes it hard to
identify the responsible anomaly sources.

In this paper, to provide additional interpretable informa-
tion and identify the sources that are responsible for the ob-
served flight data anomaly, a structured sparse subspace learn-
ing anomaly detection (SSSLAD) algorithm is proposed. The
main contributions are as follows. (1) Utilizing spatial depen-
dency among different flight data and a predefined structured
sparsity-inducing norms, the SSSLAD preserves data source in-
formation and reformulates anomaly detection to a structured
sparse subspace learning problem. (2) The predefined struc-
tured norm induces the projection coefficient matrix to belong
to a pre-specified sparsity pattern, which improves mixed na-
ture of subspace. Based on the structured sparsity subspace,
anomaly sources are identified correctly. (3) An efficient opti-
mization method based on Nesterov’s method is proposed to ac-
celerate convergence of the structured sparse subspace learning
problem. And considering temporal dependency that subspaces
in nearby time interval share similarity, subspace tracking ap-
proach is presented to reduce time consumption.

The remainder of this paper is organized as follows: In Sec-
tion 2, we discuss the challenge of applying subspace learn-
ing to provide interpretable information in anomaly detection.
Sparse subspace learning is also introduced. In Section 3, we
introduce the formulation of structured sparse subspace learn-
ing anomaly detection algorithm and the related optimization
method. We present our experimental study in Section 4 and
conclude in Section 5.

Notations. Throughout the paper, we denote vectors with
bold lower case letters, and matrices with bold upper case ones.
Variables are in the italic.

II. SUBSPACE LEARNING BASED ANOMALY DETECTION
AND SPARSE SUBSPACE LEARNING

A. Subspace learning based anomaly detection

The subspace learning problem [10],[25]-[29] is formally de-
fined as follows. Let χ be a subset of the Euclidean unit ball in
Rd , and let P be some unknown distribution over χ . The goal
is to learn a subspace projection Π ∈ Rd×d using a combination
of original attributes, such that the expected squared distance,
Eχ∈P[||χ − χΠ||], is as small as possible.

Subspace learning [10],[25]-[29] is a widely applied anomaly
detection technique with applications in many domains
[15],[18]-[24]. The learned subspace captures the variability of
data. In such subspaces, the anomalous instances can be eas-
ily detected. In contrast with other methods, these techniques
are suitable for multidimensional data sets and can work in an
unsupervised setting.

The input data stream can be viewed as a continuously grow-
ing n × t matrix Xn×t = [x1,x2, ...xt ] in Rn×t , where n is the
number of data sources, t is the measurement timestamp, and
xt is the measurement vector at t over all the data sources. At
each timestep, the column vector xt is appended to Xn×t . Tem-
poral correlations appear in the data stream matrix Xn×t across
different time stamps, and spatial correlations appear across the
different sources. The subspace where the projected data have
the largest variation is favored for anomaly detection.

On one hand, considering the temporal dependencies be-
tween time t − 1 and t, subspace learning based methods can
operate on the column vectors xt = [x1,t ,x2,t , ...xn,t ]

T and the
learned subspace captures the structure of the n-dimensional
points [15],[20],[22]. Anomalies are indicated by a change of
the direction of low dimension subspace. Similarly, on the other
hand, in considering spatial dependencies, each row of data ma-
trix Xn×t can be treated as a point in Rt [16]-[18],[24]. In this
approach, the subspace which learned by subspace learning as
shown in eq. (1) can be divided into two parts: a low dimension
subspace and high dimension subspace. In this case, the first
subspace vector u1 in projection matrix U captures the strongest
trend common to all data Xn×t , the second subspace vector u2
captures the next strongest, and so on.

Û=argmin
U

1
2
||X−XUU

T ||2F (1)

where the goal is to minimise the residual between X and
XUUT

, XUUT
is the reconstructed data, and U is the subspace

projection coefficients matrix, and || · ||2F denotes the Frobe-
nius norm. The solution is Û = [S,G]. Each row of the pro-
jection coefficient matrix corresponds to a data source, while
each column corresponds to a dimension of the subspace. The
low dimension subspace is S = [u1,u2, ...ul ], the high dimen-
sion subspace is G = [ul+1,ul+2, ...un], n is the dimension of
subspace and l is the dimension of low dimension subspace.

The low dimension subspace spans the component that is
dominated by major trend in the data, and the high dimen-
sional subspace captures the residual spikes, i.e. the abnormal
patterns. An anomaly is detected when the magnitude of the
projection onto the high dimension subspace exceeds a given
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threshold. Thus these techniques exploit correlation properties
across different data sources to detect anomalies.

Recently, a subspace learning approach making use of spatial
dependencies was proposed to identify the responsible anomaly
sources. This is possible as data source information is preserved
[18]. It assumes that the anomalous data have much more pro-
jection on the high dimension subspace and hence the subspace
projection coefficients matrix could be used for anomaly source
identification. However, one major disadvantage of traditional
subspace learning methods is that the learned subspace pro-
jection matrix is a linear combination of all the original data
sources. It is thus difficult to interpret the results [25]-[30]. To
solve this mixed nature of subspace, sparse subspace learning
methods were proposed.

B. Sparse subspace learning

A drawback of traditional subspace learning is that the
learned subspaces are typically nonzero [25]-[29]. This is be-
cause the projection of the data on the subspace is a combina-
tion of data from all the sources, making it difficult to interpret
the learned subspace and identify anomalous sources. Recently,
sparse subspace learning methods have been proposed to ad-
dress this issue.

Sparse subspaces with very few nonzero elements can be ob-
tained by reformulating subspace learning as a regression-type
optimization problem and imposing the lasso (elastic net) con-
straint `1 norm on the regression coefficients. However, sparse
subspace learning is not directly applicable to anomaly identifi-
cation problems in that sparsity (zero pattern) occurs randomly
in the projection coefficient matrix (PCM). In fact, each row
of the subspace PCM corresponds to a data source in the orig-
inal data space. And, the data sources can be selected out if
non-zero pattern is shown in certain row of subspace PCM. But
the randomness in the subspace PCM leads to the selected data
sources are independent and generally different for each dimen-
sion in the subspace. As a result, it is hard to select data sources
by sparse subspace learning.

In order to select data sources with important features, those
rows of the projection coefficients matrix (PCM) correspond-
ing to unimportant features should shrink toward zero. Thus,
each non-zero row of the resulting PCM corresponds to a data
source in the original data space with important features. Row-
sparsity (zero rows) [27] thus facilitates feature selection and
can be achieved by solving

Û=argmin
U

1
2
||X−XUU

T ||2F +λ ||U||2,1 (2)

where || · ||2,1 is the `2,1 norm and λ is the regularization pa-
rameter. ||U||2,1 denote a regularization term which penalizes U
to achieve row-sparsity.

In some cases [31][32], the subspace is expected not only to
be sparse but also has a certain structure, i.e. specific block
nonzero patterns in the subspace. The structured sparsity-
inducing norms Ω in eq. (3) sets entire horizontal and vertical
half-spaces of the grid to zero, inducing rectangular nonzero
patterns E (left of Figure 1, in black).

Ω(w)=||dG ◦w||2,1 (3)

Fig. 1. Example of induced nonzero pattern E (left, in black) and three sparsity-
inducing groups denoted by G1, G2, G3 [31].

where dG= [dG
1 , ...d

G
j , ...d

G
p ] is a p × p matrix, G =

{G1,G2,G3} is the predefined subset shape, such that dG
j = 0

if j ∈ G and dG
j > 0 otherwise, w is in 2-dimensional grid, and

◦ is the element wise product. The nonzero pattern E is the
complement of the union of groups (G1 ∪G2 ∪G3)c [31].

As shown in Figure 1, the structured sparsity-inducing norms
regularization Ω controls not only the sparsity but also the struc-
ture of the supports of elements. Whereas, the sparsity regular-
ized by `1 norm is yielded by treating each variable individually
regardless of its position in the original data space.

Based on this property, structured sparse dictionary learning
has been proposed which improved the performance of feature
selection in the application of face recognition and bioinformat-
ics [32]. Whereas, it focuses on controlling the structure of the
dictionary V, that cannot be directly applied for our purpose
of anomaly source identification. In addition, a subspace ap-
proach with joint sparsity to identify anomaly source was pro-
posed [18]. However, the joint sparsity approximation of sub-
space has to be computed repeated at each time interval and the
fast optimization technique to solve the joint sparsity problem
is also a major issue.

In fact, the automatic design of the sparsity-inducing norms
is able to adapt to target sparsity patterns. This idea inspires us
impose structure norms on the subspace projection coefficients
matrix U and study the induced effect on the identification of
anomaly sources.

Capitalizing on these results, we aim in this paper to go be-
yond sparse subspace learning and propose structured sparse
subspace learning anomaly detection (SSSLAD) algorithm.
SSSLAD will be introduced in section 3, in which the sparsity
patterns of all subspace elements are structured and constrained
to belong to a pre-specified set of shapes. Benefiting from a con-
trol of the structure across subspace elements, the performance
of anomaly identification can be improved.

III. STRUCTURED SPARSE SUBSPACE LEARNING ANOMALY
DETECTION ALGORITHM

In this section, we describe a structured sparse subspace
learning anomaly detection (SSSLAD) algorithm. Anomaly de-
tection is reformulated to a structured sparse subspace learning
problem using a structured `2,1 norm on the projection coeffi-
cients matrix to achieve structured-sparsity to faciltate learning
subspace and identifying anomaly sources simultaneously. Re-
lated optimization method and subspace tracking approach are
presented to solve the problem and reduce execution time.

A. Framework of Model

Fig. 2 illustrates the framework. A sliding window is used
to observe the streaming flight data which has five sources in



4 REPRINTED FROM: IEEE TRANS. ON INSTRUM. MEAS., VOL. x, NO. x, August 2017

Fig. 2. Framework of structured sparse subspace learning anomaly detection (SSSLAD) algorithm.

this example. Preprocessing methods such as Z-score are used
to ensure rows have a zero mean, ensuring that subspace dimen-
sions capture true variance. X denotes the mean-centered flight
data stream matrix in a sliding window.

The first step involves constraining the subspace with prede-
fined structured sparsity (for instance, the orange subset G in
Fig. 2). In the second step, the resulting structured sparse op-
timization problem is solved. A structured sparse induced sub-
space projection coefficients matrix (SSISPCM) is calculated in
this step. The first dimension of SSISPCM accounts for the gen-
eral trend of data in the sliding window. Higher dimension (2th-
5th dimension in this example) captures abnormal behaviours.
The benefit of the achieved structured sparsity of the subspace,
is that some rows of the high dimensional SSISPCM are approx-
imately all zero, which corresponds to the normal data sources.
Other rows in the higher dimension of SSISPCM with larger
values correspond to the anomaly data sources. Based on the
higher dimension of SSISPCM, the last step is to calculate the
anomaly scores of each data source. A larger score indicates
larger possibility of the corresponding data source is abnormal.

B. Construction of structured sparse subspace learning

It is observed that flight data has a certain structure. Some
parameters share common characteristics that can be embedded
into a subspace. Given a flight data matrix Xn×t = [x1,x2, ...xt ]
in Rn×t , we aim to learn a projection matrix, projecting the input
flight data into an n-dimensional subspace. While the learned
subspaces projection matrix by the traditional subspace learning
approach is a linear combination of all the original data sources.
This mixed nature of subspace makes it often difficult to inter-
pret the learned result, and to identify anomalous sources.

In order to identify anomalous sources and improve the
mixed nature of subspace , we want a specific set of structured
sparse patterns to be in subspace, such as nonzero patterns in

low dimension subspace and zero patterns in higher dimension
subspace. We define an a priori structured sparse constraint on
the subspace. Under this constraint, a lower dimension of sub-
space is as usual. While higher dimension of subspace is en-
forced that different subspace coefficients share exact same zero
patterns. As a result, the anomalous behaviors of data are signif-
icant in higher dimension of subspace. Based on the structured
sparsity subspace, we can localize anomalies sources .

To construct a subspace with this expected sparse patterns,
we develop a new structured sparsity-inducing regularization
scheme and a structured sparse subspace learning anomaly de-
tection (SSSLAD) algorithm as shown in eq. (4).

(Â,B̂) =argmin
A,B

1
2
||X−XBA

T ||2F + λ ||dG ◦B||2,1

s.t. AT A = Ip×p

(4)

where XBAT
is the reconstructed version of original data X

based on B and A, B is the subspace projection coefficients
matrix, Ω=||dG ◦B||2,1 is the structured sparsity-inducing reg-
ularization scheme, dG= [dG

1 ,...d
G
l ,...d

G
n ] is a n× n matrix, G is

the predefined zero subset shape in subspace, l controls the di-
mension of low dimension subspace, such that dG

l = {0, ...,0}T
n

if l ∈ G and dG
l = {1, ...,1}T

n otherwise, ◦ is the element wise
product operator, and the regularization parameter λ controls
the extent the structured sparse induced subspace projection
coefficients matrix (SSISPCM) B is regularized. s.t. denotes
sub ject to. I is unit diagonal matrix. The resulting solution, Â
and B̂, have structured-sparsity.

In the example of Figure. 2, the predefined zero subset shape
G is in orange. The structured sparse constraint will try to
continuously shrink the coefficients in predefined zero subset
G toward zero. However, coefficients corresponds to abnormal
sources will still keep a larger value because anomaly data have
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much more projection on the subspace. This achieved struc-
tured sparse pattern will help to identify the anomaly source.
As a result, our work formalizes flight data anomaly identifica-
tion via a structured sparse regularization framework. However,
an efficient convex optimization technique is required to find a
solution [32]-[36].

C. Optimization method and subspace tracking

We present our optimization method to solve eq. (4) based
on Nemirovski’s Line Search Scheme. This is inspired by [26],
although eq. (4) is not jointly convex in A and B, but rather
convex for A and B individually. Thus, the method solves A
and B iteratively to achieve a local optimum.

A given B: If B is fixed, we obtain the optimal A analytically.
Ignoring the regularization part, eq. (4) is simplified to minimize
||X−XBAT ||2F ,s.t. AT A = Ip×p. The solution is obtained by
a reduced rank form of the Procrustes rotation. We compute the
SVD:

(XT X)B=UDVT

Â=UVT
(5)

B given A: If A is fixed, the optimization problem becomes

B̂=argmin
B

1
2
||X−XBA

T ||2F +λ ||dG ◦B||2,1 (6)

As mentioned above, one appealing feature of the `2,1 norm
regularization is that it encourages multiple predictors to share
similar sparsity patterns. However, the resulting optimization
problem is challenging to solve due to the non-smoothness of
the `2,1 norm regularization [33]-[35]. Lower complexity bound
for smooth convex optimization is significantly better than that
of non-smooth convex optimization. [35] shows that the non-
smoothness of the `2,1 norm can be reformulated as equivalent
smooth convex optimization problems, and Nesterov’s method
can be used to solve the problem because it is an optimal first-
order black-box method for smooth convex optimization.

Due to the superior convergence rate of the smooth convex
optimization over the non-smooth one, we propose to reformu-
late the non-smooth `2,1 norm regularized problem as its equiva-
lent constrained smooth convex optimization problem. Inspired
by [35], we introduce an additional variable t = [t1, ..ti.., tn]T ,
where ti acts as the upper-bound of ||di

G ◦Bi|| . Equation (6)
can be rewritten as

B̂=arg min
(t,B)∈D

1
2
||X−XBA

T ||2F+ρ

n

∑
i=1

ti

t = [t1, ..ti.., tn]T
(7)

Where D = {(t,B)|||di
G ◦Bi|| ≤ ti,∀i= 1,2,...,n} is closed and

convex.
We propose to employ the Nesterov’s method [33] for solv-

ing eq. (7). The reason is that the Nesterov’s method has a much
faster convergence rate than the traditional methods such as sub-
gradient descent and gradient descent [33]. Nemirovski’s Line
Search Scheme for the solution of B̂ in the sliding window is
described in Table I.

A key building block in Nemirovski’s Line Search Scheme
is the Euclidean projection. Referring to step 4 in Table I, the

approximate solution [Bk+1, tk+1] is computed as a “gradient”
step of [Bk+, tk] by Euclidean projection. The Euclidean projec-
tion πD(v,U) of a given point (v,U) onto the set D is defined in
eq. (8) [34]-[35].

πD(v,U) = arg min
(t,B)∈D

1
2
||B−U||2F+

1
2
||t−v||2 (8)

TABLE I
NEMIROVSKI’S LINE SEARCH SCHEME FOR THE SOLUTION OF B̂ IN THE

SLIDING WINDOW

Algorithm 1
Input: l, X, A, ρ

Output: B̂
1: for k = 0 to . . . do
2: βk=(αk−2− 1)/αk−1, Sk = Bk + βk(Bk−Bk−1),
g′(Sk) = XTXSk−XTXA
3: while 1 do
4: [Bk+1, tk+1] = πD(Sk− g′(Sk)/Lk, tk− ρ/Lk, l)
5: if g(Bk+1)≤ g(Sk)+ 〈g′(Sk),Bk+1−Sk〉
+Lk(||Bk+1−Sk||2+||tk+1−tk||2)/2
6: then go to Step 9
7: else Lk= 2Lk
8: end while

9: set αk= (1+
√

1+4α2
k−1)/2

10: If convergence criterion of objective function in eq.(7)
is satisfied then Bk=Bk+1 and terminate the algorithm
11: end if
12: end for

Finally, the structured sparse induced subspace projection
coefficients matrix (SSISPCM) is B̂ = [S, Ĝ] , where Ĝ =
[ûl+1, ûl+2, ...ûn].

Considering temporal dependency, we can store the value of
SSISPCM B j−1 at j− 1th sliding window to initialize the SSIS-
PCM B j at jth sliding window before optimization. This is be-
cause the solution corresponding to B j−1 lies in the feasible do-
main of B j.

As a result, we keep tracking the value of B along the time
direction incrementally updating the subspace. This accelerates
the convergence of optimization and reduce time consumption.

D. Anomaly source scoring and overall steps of SSSLAD algo-
rithm

To measure the degree of anomalies for each source, we de-
fine the following anomaly source score

ςi =
∑

n
j=l+1 |gi, j|

n− l
(9)

where gi, j is the element in Ĝ. l is the dimension of low dimen-
sion subspace. n is the dimension of subspace. ςi is the anomaly
source score for data source i.

The overall steps of our SSSLAD algorithm is illustrated in
Table II.
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TABLE II
STEPS OF SSSLAD ALGORITHM

Algorithm 2
Input: flight data stream I
Output: anomaly scores of data source ςi
1: Get observed matrix X by sliding window and
pre-process.
2: Choose regulation parameter ρ and low dimension
subspace parameter l to constrain the subspace.
3: Obtain Â and B̂ iteratively. Obtain Â by solving
eq. (5) , Obtain B̂ by solving eq. (7) using Algorithm 1.
The output of this step is subspace projection coefficients
matrix B̂ = [S,Ĝ].
4: Compute abnormal score ςi for each source by the
definition in eq. (9).

IV. RESULTS

We have conducted extensive experiments with realworld
flight data sets to evaluate the performance of SSSLAD on
anomaly identification in terms of both accuracy and time con-
sumption. Three state-of-the-art anomaly identification meth-
ods: Sparse subspace learning (SSL) [26], Joint Sparse sub-
space learning (JSSL) [18], and K-nearest neighborhood graph
(KNN-G) [16] are implemented for comparison. We imple-
ment all four methods with Matlab 2015b and perform all ex-
periments on a laptop computer equipped with an Intel core i7-
4710HQ@2.50-GHz CPU and 8 GB of memory.

A. Data Sets and Model Evaluation Metrics

We use two real-world flight data sets from UAV Laboratories
at the University of Minnesota [37]-[38]. In Table III, we list the
detailed information of flight data sets.

In the experiments, we only use part of flight data from take-
off to landing. In real applications, flight data are in stream
fashion, so our approach process data by sliding window (SW).
The size and step of sliding window are 100 and 10 in the ex-
periment. For Thor Flight 107 data set and Thor Flight 111 data
set, the total number of the sliding window are 261 and 433 re-
spectively. Anomaly is in the parameter of navalt. This kind
of anomaly is in the form of contextual anomaly over related
time stamps because navalt shows the different trend compared
with the other 4 altitude related parameters. For each data set,
we single out several abnormal windows with anomalies. The
index and total number of abnormal windows (AW) are also
shown in Table III below.

We use the standard Receiver Operating Characteristic
(ROC) curves and Area under ROC curve (AUC) to evaluate
the anomaly identification performance. The ROC curve is
a standard technique for summarizing anomaly detection per-
formance over a range of trade-offs between true positive rate
(TPR) and false positive rate (FPR). AUC measures the accu-
racy and an AUC which is close to 1 is optimal while scores
near 0.5 indicate a random decision boundary. We also measure
the time to identification (TTI) to evaluate execution speed.

TABLE III
CHARACTERISTICS OF FLIGHT DATA SETS

Data sets Thor Flight 107 Thor Flight 111
Intervals (s) 0.02 0.02
Parameters 118 118

Length 14585 10328
Index [10000,12700] [3900,8328]

Size(SW) 100 100
Step(SW) 10 10

Number(SW) 261 433
Indices(AW) (119,139) (133,151), (298,316)
Number(AW) 21 38

B. Performance

There are two tunable parameters in SSL, JSSL and our pro-
posed SSSLAD: ρ controls the sparsity, and l controls the di-
mension of low dimension subspace. In SSSLAD, l also con-
trols the predefined zero subset shape G in subspace as shown
in eq. (4). Firstly, we set ρ = 8 and l = 1 in the experiment.
Then we compare the performance of SSSLAD with different
ρ . For KNN method, we need to select the number of neighbor
n = 1.

1) The example of anomaly source identification in a sliding
window: Figure. 3 shows the 130th sliding window in the de-
tection process of altitude data of the Thor 107 dataset. Altitude
parameters have five sources which are alt, navalt, h-filt, truealt
and truenavealt respectively. The data have an upward trend be-
fore going downward. The parameter of navalt from source 2 is
the anomaly source because navalt shows a different trend com-
pared with the other 4 parameters. The anomaly source score of
our SSSLAD for individual sources in the 130th sliding window
is shown in Figure. 4 (The score for each source is calculated
by eq. (9)) . The larger the score, the greater chance it could
be the anomaly source. Thus, making use of spatially depen-
dency among different data sources in stream flight data mea-
surements, our SSSLAD detects the anomaly source 2 (navalt)
correctly.

Fig. 3. Data in the 130th sliding window (altitude data of Thor 107).

2) ROC and AUC evaluation: To further evaluate our SSS-
LAD is adequate for anomaly identification, we calculate ROC
curve and AUC. As shown in Figure. 5 and Figure. 6, for
ROC curve in dataset of Thor 107 and Thor 111, we observe
that the ROC curves of the SSSLAD generally lie above those
of the SSL, JSSL, and KNN-G approach. We also find the
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Fig. 4. Anomaly source score of the 130th sliding window (altitude data of
Thor 107) by SSSLAD.

AUC value of our SSSLAD are 0.9881 and 0.9836, respectively
for dataset of Thor 107 and Thor 111, which are much higher
compared with the results of other approach ( AUC around
[0.7139,0.9395] for Thor 107, AUC around [0.8143,0.9535] for
Thor 111). As a result, SSSLAD clearly outperforms the other
three approach in terms of ROC and AUC. Thus, our SSSLAD
shows better performance for flight data anomaly source identi-
fication.

Fig. 5. Comparison of ROC curve and AUC values for Thor 107 altitude data.

Fig. 6. Comparison of ROC curve and AUC values for Thor 111 altitude data.

We also show the details of false positive rate (FPR) at differ-
ent true positive rate (TPR) in Table IV and Table V for these
two dataset. Especially, for Thor 107 and Thor 111 data set,
SSSLAD achieves the TPR of 97% at the cost of FPR of 3.8%
and 1.0%, respectively. Our SSSLAD shows low false positive
rate to identify anomaly source 2.

TABLE IV
COMPARISON OF FALSE POSITIVE RATE FOR THOR FLIGHT 107

TPR FPR
SSL JSSL KNN-G SSSLAD

85% 73.8% 59.1% 2.5% 2.9%
90% 77.9% 62.5% 6.3% 3.3%
97% 78.7% 66.2% 46.3% 3.8%

TABLE V
COMPARISON OF FALSE POSITIVE RATE FOR THOR FLIGHT 111

TPR FPR
SSL JSSL KNN-G SSSLAD

85% 29.0% 27.8% 9.8% 0.5%
90% 29.5% 52.7% 12.2% 0.7%
97% 66.1% 61.0% 13.0% 1.0%

3) Comparison of projection coefficients matrix (PCM) :
Compared with SSL and JSSL, SSSLAD improves the mixed
nature of data subspace by the structured sparse constraint in
the case of streaming flight data. The sparse subspace learned
by SSL does not fit directly into anomaly identification prob-
lems in that sparse subspace enforces sparsity randomly in the
subspaces. To illustrate this, we normalize and compare the
learned subspace projection coefficients matrix (PCM) of SSS-
LAD, JSSL and SSL for each sliding window. The size of PCM
is 5× 5 as altitude data is with five sources. Each row of the
PCM corresponds to a data source, while each column corre-
sponds to a dimension of the subspace. The first dimension
of PCM with nonzero entries corresponds the general trend of
the data in sliding window. While higher dimensions of PCM
(2th-5th dimension in Fig. 7 and Fig. 8) capture abnormal be-
haviours of the data in sliding window. Based on the statics of
higher dimensions of PCM by eq. (9), anomaly scores of each
data source can be calculated. A larger score indicates higher
possibility of the corresponding data source being abnormal.

We show the PCM in Figure. 7 and Figure. 8, with a brighter
element indicating a larger value. We observe that for some
anomaly sliding windows (for example, the 130th sliding win-
dow of Thor 107 flight altitude data in Fig. 7, the 307th slid-
ing window of Thor 111 flight altitude data in Fig. 8), both
SSSLAD and JSSL perform better than SSL and achieve the
expected sparse subspace (the row of high dimensions PCM
corresponds to the normal data source is dark, while the one
corresponds to the anomaly data source is much brighter ) that
help identify the anomaly source 2. However, for some normal
sliding windows (for example, the 30th sliding window of Thor
107 flight altitude data in Fig. 7 and the 11th sliding window of
Thor 111 flight altitude data in Fig. 8), both JSSL and SSL fail
to achieve the right subspace sparse patterns that the achieved
subspace is hard to interpret. In the same sliding windows, high
dimension subspace projection coefficients matrix learned by
SSSLAD approximately shrink toward nearly all zero. Thus,
using the predefined structured norm Ω=||dG◦B||2,1 on the pro-
jection coefficients matrix B (as shown in eq. (4)) to induce a
specific set of structured-sparsity patterns in the subspace, SSS-
LAD controls not only the sparsity but also helps to identify
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Fig. 7. Projection coefficients matrix learned by SSSLAD, JSSL and SSL at the different sliding windows (altitude data of Thor 107).

Fig. 8. Projection coefficients matrix learned by SSSLAD, JSSL and SSL at the different sliding windows (altitude data of Thor 111).

anomalous data sources. This is the reason why our SSSLAD
performed better compared with JSSL and SSL.

SSSLAD outperforms the KNN-G approach because SSS-
LAD identifies the anomaly source by the structured sparse con-

straint of data subspace rather than constructing neighbourhood
graph on the original data space for each source. Overall, our
proposed SSSLAD achieves better performance in identifying
all anomaly sources.
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4) Time to identification evaluation: In addition, we evalu-
ate the time execution of theses 4 approaches to identify the
anomaly source as we should detect them in flight data as soon
as possible in the UAV flight control loop. As shown in Table
VI and Table VII, the total number of sliding windows for data
set of Thor 107 and Thor 111 are 261 and 433, respectively.
For each window, the time execution of our SSSLAD is 1.05ms
and 0.94ms for Thor 107 and Thor 111 data, respectively. Com-
pared with the time execution of SSL, JSSL and KNN-G, our
SSSLAD decreases the time to identification (TTI) by 45.2%,
54.6%, and 60.1% respectively for Thor 107. For Thor 111, our
SSSLAD decreases the time to identification (TTI) by 44.1%,
52.2%, 65.1% respectively. The reason is that by reformulat-
ing eq. (4) as equivalent smooth convex optimization problems
in eq. (7) and making use of the proposed optimal first-order
black-box optimization technology based on Nesterov’s method
(as shown in Table I), we not only solve the subspace learning
problem, but also accelerate convergence. Moreover, consider-
ing temporal dependencies where the subspace in nearby time
intervals share similarity, we keep tracking B in time by incre-
mentally updating the subspace, which accelerates convergence
of the optimization and reduce execution time. This is advanta-
geous for real-time UAV flight data processing.

TABLE VI
COMPARISON OF TIME TO IDENTIFICATION FOR THOR FLIGHT 107 (261

WINDOWS)

List Time (ms)
SSL JSSL KNN-G SSSLAD

Total 498 601 684 273
Per window 1.91 2.30 2.62 1.05

TABLE VII
COMPARISON OF TIME TO IDENTIFICATION FOR THOR FLIGHT 111 (433

WINDOWS)

List Time (ms)
SSL JSSL KNN-G SSSLAD

Total 725 847 1160 405
Per window 1.67 1.96 2.68 0.94

5) Parameter evaluation: Next, we evaluate the AUC and
Time to identification (TTI) for different regularization param-
eter ρ . ρ controls the sparsity. λ in eq. (4) is relate to ρ .
As shown in Figure. 9, our SSSLAD keeps large and stable
AUC value when choosing different regularization parameter ρ

around [1,32] on Thor 107 and Thor 111 data. Besides, the time
consumed at each sliding window also stays stable at differ-
ent regularization parameter ρ as shown in Figure. 10. There-
fore, the performance of our SSSLAD is stable and not sensitive
to the different regularization parameter ρ around the range of
[1,32].

6) Convergence: Finally, we evaluate the convergence of our
SSSLAD in obtaining subspace projection coefficients matrix
B̂ (as shown in Table I). We initiate the value of A and B as
unit diagonal matrix and zero matrix respectively in the exper-
iment. As shown in Figure. 11, for normal flight data (30th

Fig. 9. AUC comparison of SSSLAD at different sparsity regularizing param-
eter ρ on Thor 107 and Thor 111 altitude data.

Fig. 10. TTI comparison of SSSLAD at different sparsity regularizing param-
eter ρ on Thor 107 and Thor 111 altitude data.

sliding window of Thor 107 and 11th sliding window of Thor
111 in this example), the value of objective function in eq. (7)
decreases to nearly zero after 4 iterations. For anomalous data
(130th sliding window of Thor 107 and 307th sliding window
of Thor 111 in this example), the value of the objective function
in eq. (7) decreases to a steady value after 5 iterations. SSSLAD
thus achieves fast convergence and reduces processing time re-
quirements.

Fig. 11. Convergence of SSSLAD for different sliding windows of Thor 107
and Thor 111 altitude data.

V. CONCLUSIONS

In this work, we propose a structured sparse subspace
learning anomaly detection (SSSLAD) considering spatially-
temporal oriented dependency. The technique can identify
anomalous sources in flight data accurately and in a timely, on-
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line manner.
Using spatially dependency and predefined structured spar-

sity inducing norms, the SSSLAD reformulates anomaly detec-
tion to a structured sparse subspace learning problem and pre-
serves data sources information. A structural norm is imposed
on the projection coefficients matrix to achieve structured-
sparsity. Benefiting from the control of the structure across
subspace projection coefficients matrix, the performance of
anomaly sources identification is improved. The original
non-smooth convex optimization is reformulated as equiva-
lent smooth convex optimization problems based on Nesterov’s
method to accelerate convergence. Considering temporal de-
pendency, subspace tracking approach is presented to reduce
time consumption because the subspace in nearby time interval
share similarity.

The experiments on two real flight data sets validate that
the proposed SSSLAD can identify anomaly sources correctly
and efficiently. Compared with other approach, SSSLAD can
achieve good performance in terms of accuracy and speed. The
study has significant supports to provide interpretability for
flight data online anomaly detection.

There are three avenues for potential extensions and further
work. Firstly, the trend of ever-increasing amounts of flight data
create significant challenges for real-time processing. We will
explore techniques to improve the scalability of this approach
in the context of big data. Secondly, we will further evaluate
the identification performance of SSSLAD on flight data with
multi-anomaly sources. Finally, the proposed SSSLAD algo-
rithm is evaluated on a personal laptop and does not consider
power consumption of real UAV onboard application. There-
fore, hardware acceleration techniques such as acceleration on
field-programmable gate arrays (FPGAs) will be used to ac-
celerate the SSSLAD with parallelization strategies and reduce
power consumption to meet real UAV onboard application re-
quirements.
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