
A Scalable Dataflow Accelerator for Real Time
Onboard Hyperspectral Image Classification

No Author Given

No Institute Given

Abstract. Real-time hyperspectral image classification is a necessary
primitive in many remotely sensed image analysis applications. Previous
work has shown that Support Vector Machines (SVMs) can achieve high
classification accuracy, but unfortunately it is very computationally ex-
pensive.This paper presents a scalable dataflow accelerator on FPGA for
real-time SVM classification of hyperspectral images.To address data de-
pendencies, we adapt multi-class classifier based on Hamming distance.
The architecture is scalable to high problem dimensionality and available
hardware resources. Implementation results show that the FPGA design
achieves speedups of 26x, 1335x, 66x and 14x compared with implemen-
tations on ZYNQ, ARM, DSP and Xeon processors. Moreover, one to
two orders of magnitude reduction in power consumption is achieved for
the AVRIS hyperspectral image datasets.

1 introduction

Hyperspectral image (HSI) classification aims to assign a categorical class label
to each pixel in an image, according to the corresponding spectral and/or spatial
features[1]. In satellite onboard processing, real-time HSI classification can signif-
icantly reduce download bandwidth and storage requirements, as well as enable
greater autonomy due to improved real-time decision making ability. Moreover,
improved processing speeds are necessary to match the higher spectral, spatial
and temporal resolutions associated with improved sensors.

While there is a clear need for real-time HSI classification, it is challenging to
meet both the required computational (≈ 3× 1010 operations/second [12]) and
power (< 20 W) constraints. In this paper we propose an FPGA-based SVM
processor which fully meets these requirements. To the best of our knowledge,
this is the first reported system that addresses this challenge.

Support vector machines (SVM) are a supervised non-linear machine learning
technique which can effectively deal with the Hughes phenomenon [11], caused
by the high spectral dimensionality of HSI data. For this reason it has been
widely used for HSI classification [4]. SVM classification is computationally in-
tensive task, with computational complexity being linear with the number of
support vectors (SV), the dimensionality of SVs, and the dimensionality of the
problem [14]. Furthermore, a multi-class classifier is required for most remote
sensing applications. In this paper, we focus on acceleration of the classification
phase, and assume that training has been performed off-line.

FPGAs have been widely used to accelerate applications in a number of
different fields including financial modelling [22], stencil computation [21] and



2

HSI [9], usually achieving low power consumption. Due to its importance, several
FPGA-based implementation of SVMs have been reported using techniques such
as Logarithmic Number Systems [2, 5], Cascade SVM [14, 19], systolic architec-
tures [5, 7, 16], fixed point arithmetic [17], mixed-precision [15], coprocessor [3],
and data flow architectures. Most of these studies focused on binary classifiers
and were tailored to special applications. This work addresses the multi class
classification problem in which strategies for dealing with data dependencies
between binary classifiers are explored.

This paper proposes a scalable SVM multi-class classifier accelerator for HSI
classification which achieves real-time on-board classifications under strict power
and volume constraints. The main contributions are:

– A scalable accelerator architecture which utilises dataflow programming tech-
nology to maximize performance.

– Models to predict and optimise the proposed architecture.
– An implementation of the accelerator on a Maxeler MPC-X1000 dataflow

node. The runtime, energy consumption and classification accuracy are eval-
uated and compared to ARM, ZYN, DSP and Xeon on real HSI datasets.

2 Background

Hyperspectral Images are typically represented as a data cube [1], Z ∈ Rn1×n2×nb ,
with spatial information collected in the X-Y plane containing n1 × n2 pixels,
and spectral information represented in the Z-direction with nb spectral bands,
as shown in Fig. 1.

Fig. 1. Hyperspectral image data cube[1]

Each pixel can be represented as a vector z ∈ Rnb in spectral space. Sim-
ilar materials on the earth’s surface have similar spectral feature, making the
pixels separable. Multi-class classifiers are built from multiple binary classifiers
and strategies can be parallel or hierarchical. Parallel approaches usually provide
higher accuracy and less data dependencies, but require more binary classifier
instances compared to hierarchical approaches [11]. Thus they are more suitable
for FPGA based implementation. Parallel approaches label a new sample ac-
cording to the result of a discriminant function whose inputs are the output of
several parallel binary classifiers. The One-Against-One (OAO) parallel strategy



3

usually provides higher accuracy when used with a suitable proper discriminant
function such as Hamming distance.

In OAO, a K class classification uses K (K − 1) /2 binary classifiers to com-
pute all pair-wise values. Each binary classifier is trained with the same number
of samples from two different classes. After training, the classification of a new
pixel vector,z ∈ Rnb1 , involves the process as shown in algorithm 1.

Algorithm 1 Multi class SVM classifier with Hamming Distance as discriminant
function
1: input a test pixel z;
2: for Iteration j from 1 to K (K − 1) /2 do
3: compute the jth Hamming Code bit with SVM binary classifier as

R code(j) = sign

[
l∑

i=1

α(j,i)K(z, x(j,i)) + bj)

]
(1)

4: end for
5: for Iteration j from 1 to K do
6: compute the Hamming distance with each class’s mask and identifying code as

T res(j) = (R Code&mask(j))⊕ I code(j) (2)

7: for Iteration i from 1 to K (K − 1) /2 do
8: accumulate the total none zero bits as hamming distance

H(j) = (T res(j,i) == 1)?H(j) + 1 : H(j) (3)

9: end for
10: end for
11: label the pixel with the index of minH(j)

For each new test data, K (K − 1) /2 binary classifiers can generate the
corresponding K (K − 1) /2 bit Hamming code, using equation(1), in which
x(j,i) ∈ Rnb1 is the ithsupport vector in the jth SVM binary classifier, nb1 is
the support vectors’s dimension which is usually much less than the number of
spectral bands nb, l is the total number of support vectors in each SVM binary
classifier, α(j,i) is the ith Lagrange multiplier in jth SVM binary classifier, bj is
a real constant, and K(z, x(j,i)) is the kernel function. In this work, we employ
the widely-used radial basis function (RBF) kernel:

K(z, xj) = exp
{
− ‖ z − xj ‖22

/
σ2
}

(4)

where σ is the width parameter. The values of the hyperparameters, σ, α and b
are ascertained by cross validation during training.

Each class also has an identifying code formed in the training process. By
computing the Hamming distances between the test data’s Hamming code and
each classes’ according to equation(2) and (3), the test data is labelled with the
class with the minimum corresponding Hamming distance.

In equation(2), mask(j) and I Code(j) are the mask code and identifying
code of the jth class. Table 1 shows an example in which these codes are generated



4

for a 4 class classification problem. In this example, we use C2
4 = 6 binary

classifiers, with the the binary classifier for classes 1 and 2 being labelled as
1vs2. The outputs can have values of 1, 0, and x, where 1 and 0 indicate whether
the processed datum is in this class, and x indicates the output is not related
to this class. In Table 1, the outputs of 2vs3, 2vs4, and 3vs4 are labelled x for
class 1, since class 1 is not used in these classifiers. To support efficient hardware
operators, the mask code sets the bit that corresponds to x to be 0 to only use
relevant outputs, and the identifying code contains the classifier outputs. In this
example, the mask code for class 2 is 100110 as only the first, forth, and fifth
code are relevant to class 2. Moreover, since the 1vs2, 2vs3 and 2vs4 classifiers
output 0, 1 and 1 respectively, the identifying code for class 2 is 000110.

Table 1. The identifying and mask codes for a 4-classification problem

1vs2 1vs3 1vs4 2vs3 2vs4 3vs4 identifying code mask code
Class 1 1 1 1 x x x 111000 111000
Class 2 0 x x 1 1 x 000110 100110
Class 3 x 0 x 0 x 1 000001 010101
Class 4 x 0 0 x 0 0 000000 001011

3 Accelerator Architecture

3.1 Architecture Overview

The data flow accelerator architecture is shown in Fig. 2. We implement a data
flow engine (DFE) on an FPGA chip. The DFE takes newly sampled data,
and outputs classification results to the decision system or downlink system of
satellites. Several binary classification kernel (BC kernel) groups are instantiated
on the FPGA, each of which can generate the Hamming code for an image pixel.
With the Hamming distance kernel following each BC kernel group, each pixel is
assigned a class label. The collection kernel combines the results of the Hamming
distance kernel to a certain bit width and finally outputs the results for all the
pixels processed in the DFE.

The number of BC kernel groups in the DFE can be adjusted according the
classification problem size and the hardware resources available on the FPGA.
The whole system is scalable and flexible, and can fit different application. More-
over, no data dependencies exist between different BC kernels. All BC kernel
groups operate simultaneously to achieve the best performance under memory
and interface bandwidth constraints.

3.2 Memory and Computation Data Flow

As shown in Fig.2, different BC kernel groups have separate image data RAM
and share preload SVM model ROMs. A single DFE contains M BC kernel
groups, and M image data RAMs are instantiated. The preload SVM model
ROMs store the parameters for each binary SVM classifier that comprise the
support vectors and corresponding alpha parameter. For each binary SVM mod-
el, a support vector (SV) ROM and corresponding Alpha parameter ROM are



5

Image data 

RAM 1

BC

Kernel

1

Preloaded SVM model

ROMs

BC

Kernel

2

BC

Kernel

N

...

...

BC Kernel Group

1

HammingDistance Kernel_1

1 1 1

BC

Kernel

1

BC

Kernel

2

BC

Kernel

N...

HammingDistance Kernel_M

1 1 1

...

Collection Kernel

BC Kernel Group

M

...

Image data 

RAM M

Data input interface

Decision or downlink System

Fig. 2. Architecture of multi class classifier for HSI classification

instantiated. For the BC kernel group containing N BC kernels, N SV ROMs
and N Alpha ROMs are needed. The data in each SV ROM and each Alpha
ROM are shared by M BC kernel with the same index in M BC kernel groups.
All the data are stored as 32 bit single precision values for compatibility with
software, but computations are in fixpoint(16,16) to save DSP resources and
decrease computing latency. The data flow in DFE is shown in Fig.3

SV_N(1,0) SV_N(1,1) ... SV_N(1,nb1) SV_N(l,0) SV_N(l,1) ... SV_N(l,nb1)

SV_1(1,0) SV_1(1,1) ... SV_1(1,nb1) SV_1(l,0) SV_1(l,1) ... SV_1(l,nb1)

z(1,0) z(1,1) ... z(1,nb1) z(1,0) z(1,1) ... z(1,nb1)

Alpha_1(1) Alpha_1(l)

Alpha_N(1) Alpha_N(l)

z(M+1,0)

SV_1(1,0)

SV_N(1,0)

SV_1(1,0) SV_1(1,1) ... SV_1(1,nb1) SV_1(l,0) SV_1(l,1) ... SV_1(l,nb1)

z(M,0) z(M,1) ... z(M,nb1) z(M,0) z(M,1) ... z(M,nb1)

Alpha_1(1) Alpha_1(l)

z(M+M,0)

SV_1(1,0)

SV_N(1,0) SV_N(1,1) ... SV_N(1,nb1) SV_N(l,0) SV_N(l,1) ... SV_N(l,nb1)

Alpha_N(1) Alpha_N(l)

SV_N(1,0)

. . .

. . .

BC Kernel 1-N

BC Kernel M-1

BC Kernel M-N

l*nb1 ticksnb1 ticks0

SV 
ROM 1

SV 
ROM N

Alpha 
ROM 1

Alpha 
ROM N

RAM 1

RAM M

(l-1)*nb1 ticks

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

BC Kernel 1-1

BC Kernel Group 1

BC Kernel Group M

Fig. 3. Data flow in DFE with M classifiers and N BC kernel in each classifier

In Fig. 3, z(i, j) is the jth element of ith test pixel vector, SV t(i, j) is the
jth element of ith support vector in tth binary classifier, Alpha t(i) is the ith

Lagrange multiplier in the tth binary classifier, l is the total number of support
vectors for each binary classifier and nb1 is the dimension of support vector.



6

As shown in Fig.3, M BC kernel groups, containing total M ×N BC kernels,
work simultaneously. Each kernel inputs one element of the support vector and
one element of the test pixel vector in each clock tick. So M test pixels can get
their corresponding N bits hamming codes in l × nb1 ticks.

3.3 Design Models

In this section, we analyze the performance of the aforementioned architecture.
We use a resource specification file to indicate the number of available resources
in the target platform. The available resources include on-chip logic resources
and off-chip bandwidth resources.

Bottleneck Analysis In order to eliminate performance bottlenecks, we devel-
op design models to estimate resource usage based on application variables and
design parameters, as listed in Table 2.

Table 2. Variables and parameters used by design models.

Design Parameters
nai number of arithmetic operators of type i
ri,L/F/D resource usage of a type i arithmetic operator on LUTs, FFs, or DSPs
rM number of bits can be stored in a BRAM
AL/F/D/M/BW available logic, memory, and memory bandwidth resources

Application variables
K the number of classes
N the number of BC kernels in each group and equals to K (K − 1) /2
M the number of BC kernel Groups in single DFE
l the number of support vectors for each binary classifier
nb1 the dimension of each support vector
Clk Fren the system clock frequency for the kernels

Bandwidth Analysis. ROM initialization is one-time process which is prior
to the computation process and has no strict bandwidth requirements.

The off-chip data transfer only involves the data interface (PCIe, Ethernet,
1394) through which CPU or Spectral meter transfers test pixel data to RAMs
and reads back classification results during computation process.

According to Fig. 3, M single precision pixel vector elements should be trans-
ferred to RAMs in one clock in each first nb1 clock ticks starting from each integer
times of l×nb1 clock ticks. The peak bandwidth is 32×M×Clk Fren. The pixel
vector data will be stored in RAM and repeatedly used in total l × nb1clocks.

The BC kernel group needs l× nb1 clock cycles to process one pixel, and the
result is 4bits (for the maximum 16 classes situation), even M BC kernel groups
work simultaneously, the output bandwidth is 4×M/(l×nb1) bits/s. Therefore,
we express the total bandwidth requirements (bits/s) as:

BW = 32×M × Clk Fren+ 4×M/(l × nb1) (5)

Hardware Utilisation Analysis. The logic cells, on-chip memory and DSP
blocks are the main resources consumed in the design. We list the data-path



7

structure for BC kernels in Fig. 4. Most of the on-chip resources are consumed
by arithmetic operators in BC kernels.

xi

z

+

21 

Exp

α 

Sign+

Fig. 4. Data path of binary classifier kernel

The proposed architecture contains N ×M BC kernels. We express the on-
chip logic resource usage as

RL/F/D =
∑

i∈�=+,−,∗,...
nai · ri,L/F/D ·N ·M (6)

where nai indicates the number of arithmetic operators of type i, and ri,L/F/D

indicates the resources (LUTs, FFs, or DSPs) consumed by the operator. As an
example, as shown in Fig. 4, a BC kernel contains 3 multipliers (na× = 3) and
each multiplier uses 1 DSP block (r×,D = 1).

The direct on-chip memory requirements involve the SV ROMs, Alpha ROMs
and RAMs. We map these memory architectures into Block RAMs (BRAMs) in
FPGAs.

All these should be realized with M20K memory blocks in Altera FPGAs. In
Table 3, we list the number of bits the total on-chip memory architecture needs
to store, and use rM to indicate the memory capacity of a BRAM. As shown in
the table, the number of total memory blocks can be expressed as:

RM = 32× d(N × l × nb1)/rM +N × l/rM + (M × nb1)/rMe (7)

Table 3. Memory requirements

SVROM Alpha ROM RAM
Width(bits) 32 32 32

Depth l × nb1 l nb1

Number N N M
Total(bits) 32×N × l × nb1 32×N × l 32×M × nb1

Block Memory d(32×N × l × nb1)/rMe d(32×N × l)/rMe d(32×M × nb1)/rMe

Performance Model In the architecture shown in Fig. 2, a DFE can process M
pixels in l×nb1 clock cycles under the condition that the bandwidth and hardware
requirement are both satisfied. The system performance isM × Clk Fren/(l × nb1)
pixel/s. Then for real time image processing, the following formula must be sat-
isfied.

M × Clk Fren/(l × nb1) ≥ S (8)

s.t.



8

– 32×M × Clk Fren+ 4×M/(l × nb1) ≤ ABW

– RL/F/D =
∑

i∈�=+,−,∗,... nai · ri,L/F/D ·N ·M ≤ AL/F/D

– RM = 32× d(N × l × nb1)/rMe+ dN × l/rMe+ d(M × nb1)/rMe ≤ AM

where ABW indicates the available off-chip memory bandwidth, and AL/F/D and
AM indicates the available on-chip logic and memory resources.

4 Experiments and Results

In this section the performance of the proposed architecture is evaluated. The
accelerator is compared to systems using radiation hardened and state-of-the-art
commercial multi core CPUs. Execution time and energy consumption are the
main performance metrics and we also provide resource utilisation and classifi-
cation accuracy results.

4.1 Experimental Setup

Maxeler Platform The accelerator is implemented on a Maxeler MPC-X1000
dataflow node which contains eight MAX4 DFEs in a 1U form factor. We just
use one DFE to realize our accelerator. Each DFE is equipped with a single
Altera Stratix V 5SGSMD8N2F45C2 FPGA. Although all the DFE boards are
connected to a server via PCIe, our accelerator can operate without an external
server, thus making it more suitable for space applications. We used the MAXJ
language to express the accelerator design. The MaxCompiler maps the design
to the FPGA and provides APIs for the host application running on the CPU.

Hyperspectral Image Data Sets The HSI data sets used are the well-known
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) Northwestern In-
diana scene and Salinas Valley scene. AVIRIS, which was developed by NASA
JPL. These data are images in 224 spectral band regions ranging from 400 to
2500 nanometers. The dimensions of the original pixel vectors are thus 224. How-
ever, because of water absorption bands and information redundance, only a few
spectral bands, e.g. 9 in this study, are used for training and classification. The
first image contains145× 145 pixels, while the second image contains 512× 217
pixels. Both images contain 16 classes.

4.2 Classification Accuracy and Hardware Occupation

LS-SVM1 is adopted in training phase to keep the number equality of support
vectors in each binary classifier. We evaluate the overall accuracy of our accel-
erator in the aforementioned two image data sets. For both images, we try to
classify 6 classes from totally 16 classes. Each binary classifier is trained with
100 samples containing 9 spectral bands, and 15 binary classifiers are used to
realize the 6 class classification problem. 540 pixels in each image are used as
the test pixel vectors. The overall accuracy and comparison with some recent
research are shown in Table 4.
1 The source code can be found from http://www.esat.kuleuven.be/sista/lssvmlab/



9
Table 4. Overall accuracy(OA) comparison

Methods OA on first image(%) OA on second image(%)
Approach in this paper 98.3 97.8

ANN based Adaboost[18] 98.02 -
MLRsub[6] 92.5 -

HA-PSO-SVM[20] 98.2 -
SdA[8] 91.9 95.5

From Table 4, the overall accuracy of the multi classifier based on Hamming
distance is almost the same or better than other methods on these two data sets.
We did not realize 16 classes because the other 9 classes did not have enough
labeled samples for training. Many approaches have been proposed to solve this
problem [20]. These methods are implemented during the training phase, and
can be combined with the Hamming distance method of this study during the
classification phase. The only problem is that we need more BC kernels in a
group to realize multi classification. Even for the datasets with the most number
of classes, e.g. 16 in AVRIS data sets, a single DFE can accommodate 120 BC
kernels and can be implemented on our FPGA.

Eight BC kernel groups each containing 15 BC kernels, 8 Hamming Distance
kernels, 8 RAM kernels, 15 SV ROM kernels and 15 Alpha ROM kernels and
one Collection kernel are instantiated in a single DFE. The target operating
frequency is set to 120 MHz. The hardware utilisation after map and routing
using Altera Quartus II 13.1 tool set is shown as in Table 5.

Table 5. FPGA resource utilizationm

Resources Logics FFs DSPs Bolck Memory
Used 234666 443688 1680 1715

Avaiable 262400 524800 1963 2567
Utilization 89.43% 84.55% 85.58% 66.81%

From Table 5, we can see that hardware resources are almost fully utilized
and Utilization is balanced between logic, flip-flops, DSPs and memory.

4.3 Performance Comparison with Other Processors

Radiation harden processors are the traditional option for satellite on-board com-
puters, and performance for the most advance space grade CPU, e.g. RAD750
from BAE systems, is just about 400DMIPS@200MHz. Other processors, such
as ARM and DSP are also used in some low cost space missions, especially in
some experimental micro satellites. In this context, we compare the run time and
energy consumption between our DFE accelerator and some available commer-
cial processors whose performances are similar with space grade CPUs. These
processors include ZYNQ XC7Z020, ARM Cortex A9 and TMS320C6678 D-
SP. Xilinx ZYNQ XC7Z020 chip runs at 100MHz frequency. Six binary SVM
classifiers are instantiated in the PL part and computation flow and data trans-
fer management are performed with the ARM processor in PS part. The ARM
Cortex-A9 processor runs at 666.7MHz, and employs the Vector Floating Point
Unit and 32KB Cache to speed up the computing. TMS320C6678 DSP is one
of the most advanced multicore DSP chips from Texas Instruments. It runs at
1GHz and 8 cores are programmed in parallel. One million test pixel vectors are



10

used for the evaluation. We also compare the performance of the accelerator with
state-of-the-art dual Intel Xeon E5-2650 CPUs to demonstrate its performance
advancement. The Xeon CPUs has 12 cores and 12 threads parallel programming
are designed with OpenMP library. Eight million test pixel vectors are used for
duel CPUs performance evaluation. The detailed result is shown as in table 6.

Table 6. Runtime and power consumption comparison

Platform ZYNQ ARM DSP Xeons DFE
T(µs/pixel) 25.8 1321.2 65.8 14.1 0.99
Power (W) 3.9 3.3 16 95 26.3

E(mJ/pixel) 0.1 4.3 1.05 1.33 0.03
Speedup 26.0 1334.5 66.4 14.2 1

From Table 6, the accelerator on DFE gets 26x, 1334.5x, 66.4x and 14.2x
speed up compared to the ZYNQ, ARM, DSP and Xeon processors respectively,
while consuming two orders of magnitude less energy than the ARM, DSP and
Xeon processors. However, less hardware resource in radiations harden FPGA
chips and other reliability related measures, such as triple module redundan-
cy(TMR) and configuration scrubbing, can decrease the performance in real
space application compared to this study. The most advanced space grade FP-
GA chip, Xilinx Virtex-5QV XQR5VFX130, has about 1/7 hardware resources
of the FPGA chip in this research. Taking the extra hardware consumption for
TMR into account, the performance in space grade FPGA may decrease about
21 times compared to FPGA in this paper. Nevertheless more than 60x and 3x
speed up compared to ARM and DSP respectively can be achieved.

4.4 Performance Comparison with Design Model

To evaluate the accuracy of the design model proposed in section 3, we compare
the real performance of accelerator with the theoretical performance from design
model in terms of the average processing time for one pixel. The number of BC
kernel groups are set to 1, 4 and 8 respectively. The amount of pixels to be
classified are set from 0.02M to 10M . The results are shown in Fig.5.

From Fig.5, the real performances are quite similar to the theoretical results
especially when the amount of pixels are larger than 1M. When the pixels are less
than 1M, the real performance is lower than theoretical value. That’s caused by
the kernel initialization which is a relatively fixed period but has more influences
on the average performance for small datasets. The results in Fig.5 demonstrate
the accuracy of the design model is good enough for performance prediction and
optimization.

5 Conclusion

This paper proposes a novel accelerator architecture for real time hyperspectral
image classification which is a bottleneck for both on-board and ground hyper-
spectral image analysis. The Hamming distance based SVM is adopted as the



11

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

Number of Pixels(Millions)

A
ve

ra
ge

 P
ro

ce
ss

in
g 

T
im

e(
us

/p
ix

el
)

 

 

Real data with 1 BC Kerner Group
Theoritical data with 1 BC kernel Group
Real data with 4 BC Kerner Groups
Theoritical data with 4 BC kernel Groups
Real data with 8 BC Kerner Groups
Theoritical data with 8 BC kernel Groups

Fig. 5. Performance comparison between the models and real implementation

multi class classifier which provides high accuracy and avoids data dependen-
cy between different binary classifiers. The accelerator uses the advantages of
dataflow programming to achieve high performance and can be easily scaled
to fit different applications. The accelerator is implemented on the Maxeler
MPCX-1000 dataflow node. Experimental results on real HSI data sets show
that Hamming Distance based multi classes SVM classifier can achieve higher or
equal accuracy compared to other approaches, with 26x, 1334.5x,66.4x and 14.2x
speed up over ZYNQ, ARM, DSP and Xeon processors, while consuming one
or two orders of magnitude lower energy. These results show for the first time,
the feasibility of real-time on-board HSI classification. Future work involves ac-
celerating the multi class classifiers with feature extraction, and extending the
accelerator architecture to other state-of-the art classifiers, such as convolutional
neural networks.

References

1. Bioucas-dias, J.M. et al. Hyperspectral Remote Sensing Data Analysis and Future
Challenges. IEEE Geoscience and Remote Sensing Magazine. 6, 6-36 (2013)

2. Boni, A. and Zorat, A. FPGA Implementation of Support Vector Machines with
Pseudo-Logarithmic Number Representation. The 2006 IEEE International Joint
Conference on Neural Network Proceedings. 618-624 (2006)

3. Cadambi, S., Igor, D., et al. A massively parallel FPGA-based coprocessor for sup-
port vector machines. Proceedings - IEEE Symposium on Field Programmable Cus-
tom Computing Machines, FCCM 2009. 115-122(2009)

4. Gustavo, C., Davis, T., et al. Advances in hyperspectral image classification: Earth
monitoring with statistical learning methods. IEEE Signal Processing Magazine. 31,
1, 45-54 (2014)



12

5. Irick, K.M. et al. A hardware efficient support vector machine architecture for F-
PGA. Proceedings of the 16th IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM’08. 304-305(2008)

6. Khodadadzadeh, M. et al. A New Framework for Hyperspectral Image Classification
Using Multiple Spectral and Spatial Features. IEEE Geoscience and Remote Sensing
Symposium. 4628-4631(2014)

7. Kyrkou, C. and Theocharides, T. SCoPE: Towards a systolic array for SVM object
detection. IEEE Embedded Systems Letters. 1, 2, 46-49(2009)

8. Liu, Y. et al. Hyperspectral classification via deep networks and superpixel segmen-
tation. International Journal of Remote Sensing. 36, 13, 3459-3482(2015)

9. Lopez, S. et al. The promise of reconfigurable computing for hyperspectral imaging
onboard systems: A review and trends. Proceedings of the IEEE. 101, 3, 698-722
(2013)

10. Mandal, B. Design of a Systolic Array based Multiplierless Support Vector Ma-
chine Classifier. 2014 International Conference on Signal Processing and Ingegrated
Networks. 2, 35-39(2014)

11. Melgani, F. and Bruzzone, L. 2004. Classification of hyperspectral remote sens-
ing images with support vector machines. Geoscience and Remote Sensing, IEEE
Transactions on. 42, 8, 1778C1790(2004)

12. Montenegro, S. et al. Hyperspectral monitoring data processing. ISBN 3-89685-
569-7, 1-4(2003)

13. Papadonikolakis, M. et al. Performance comparison of GPU and FPGA architec-
tures for the SVM training problem. Proceedings of the 2009 International Confer-
ence on Field-Programmable Technology, FPT’09. 388-391 (2009)

14. Papadonikolakis, M. and Bouganis, C.S. Novel cascade FPGA accelerator for sup-
port vector machines classification. IEEE Transactions on Neural Networks and
Learning Systems. 23, 7, 1040-1052 (2012)

15. Papadonikolakis, M. and Bouganis, C.S. A Heterogeneous FPGA Architecture for
Support Vector Machine Training. Field-Programmable Custom Computing Ma-
chines (FCCM), 2010 18th IEEE Annual International Symposium on. 6-9(2010)

16. Patil, R. a. et al. Power aware hardware prototyping of multiclass SVM classifier
through reconfiguration. Proceedings of the IEEE International Conference on VLSI
Design. 62-67(2012)

17. Pina-Ramirez, O. et al. An FPGA implementation of linear kernel support vector
machines. Proceedings of the 2006 IEEE International Conference on Reconfigurable
Computing and FPGAs, ReConFig 2006. 314-319(2006)

18. Sami, Q. et al. Neural Network based Adaboosting Approach for Hyperspectral
Data Classification. 2011 International Conference on Computer Science and Net-
work Technolgoy. 241-245(2011)

19. Theocharides, T. and Member, S. Embedded Hardware-Efficient Real-Time Vec-
tor Machines. IEEE Transactions on Neural Networks and Learning Systems. 1-
14(2015)

20. Xue, Z. et al. Harmonic Analysis for Hyperspectral Image Classification Integrated
With PSO Optimized SVM. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing. 7, 6, 2131-2146(2014)

21. Niu X. et al. Dynamic Stencil: Effective exploitation of run-time resources in re-
configurable clusters. Proceedings of the 2013 International Conference on Field-
Programmable Technology, FPT’13 214-221 (2013)

22. Thomas D., Luk W. Credit Risk Modelling using Hardware Accelerated Monte-
Carlo Simulation. IEEE Symposium on Field Programmable Custom Computing
Machines, FCCM 2008. 229-238(2008)


