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Abstract With an aim to understand the information encoded by DNA sequences,
databases containing large amount of DNA sequence information are fre-
quently compared and searched for matching or near-matching patterns.
This kind of similarity calculation is known as sequence alignment. To
date, the most popular algorithms for this operation are heuristic ap-
proaches such as BLAST and FASTA which give high speed but low sen-
sitivity, i.e. significant matches may be missed by the searches. Another
algorithm, the Smith-Waterman algorithm, is a more computationally
expensive algorithm but achieves higher sensitivity. In this paper, an
improved systolic processing element cell for implementing the Smith-
Waterman on a Xilinx Virtex FPGA is presented.
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1. Introduction

Bioinformatics is becoming an increasingly important field of research.
With the ability to rapidly sequence DNA information, biologists have
the tools to, among other things, study the structure and function of
DNA; study evolutionary trends; and correlate DNA information with
disease. For example, two genes were identified to be involved in the
origins of breast cancer in 1994 [1]. Such research is only possible through
the help of high speed sequence comparison.

All the cells of an organism consist of some kind of genetic informa-
tion. They are carried by a chemical known as the deoxyribonucleic
acid (DNA) in the nucleus of the cell. DNA is a very large molecule and
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nucleotide is the basic unit of this type of molecule. There are 4 kinds
of nucleotides and each have different bases, namely adenine, cytosine,
guanine and thymine. Their abbreviated forms are “A”, “C”, “G” and
“T” respectively. In this paper, the sequence is referred to as a string,
and the bases form the alphabet for the string.

It is possible to deduce the original sequencing in DNA which codes
for a particular amino acid. By finding the similarity between a number
of “amino-acid producing” DNA sequences and a genuine DNA sequence
of an individual, one can identify the protein encoded by the DNA se-
quence of the individual. In addition, if biologists succeed in finding
the similarity between DNA sequences of two different species, they can
understand the evolutionary trend between them. Another important
usage is that the relation between disease and inheritance can also be
studied. This is done by aligning specific DNA sequences of individu-
als with disease to those of normal people. If correlations can be found
which can be used to identify those susceptable to certain diseases, new
drugs may be made or better techniques invented to treat the disease.
There are many other applications of bioinformatics and this field is
expanding at an extremely fast rate.

A human genome contains approximately 3 billion DNA base pairs. In
order to discover which amino acids are produced by each part of a DNA
sequence, it is necessary to find the similarity between two sequences.
This is done by finding the minimum string edit distance between the
two sequences and the process is known as sequence alignment.

There are many algorithms for doing sequence alignment. The most
commonly used ones are FASTA [2] and BLAST [3]. BLAST and FASTA
are fast algorithms which prune the search involved in a sequence align-
ment using heuristic methods. The Smith-Waterman algorithm [4] is an
optimal method for homology searches and sequence alignment in genetic
databases and makes all pairwise comparisons between the two strings.
It achieves high sensitivity as all the matched and near-matched pairs
are detected, however, the computation time required strongly limits its
use.

Sencel Bioinformatics [5] compared the sensitivity and selectivity of
various searching methods. The sensitivity was measured by the cover-
age, which is the fraction of correctly identified homologues (true posi-
tives). The coverage indicates what fraction of structurally similar pro-
teins one may expect to identify based on sequence alone. Their exper-
iments show that for a coverage around 0.18, the errors per query of
BLAST and FASTA are about two times that of the Smith-Waterman
Algorithm.
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Many previous ASIC and FPGA implementations of the Smith-Waterman
algorithm have been proposed and some are reviewed in Section 4. To
date, the highest performance chip [6] and system level [7] performance
figures have been achieved using a runtime reconfigurable implementa-
tion which directly writes one of the strings into the FPGA’s bitstream.

In this work, an FPGA-based implementation of the Smith-Waterman
algorithm is presented. The main contribution of this work is a new 3
Xilinx Virtex slice Smith-Waterman cell which is able to achieve the
same density and performance as an earlier reported cell [6], without
the need to perform runtime reconfiguration. This has advantages in
that the design is less FPGA device specific and thus can be used for
non-Xilinx FPGA devices as well as ASICs. Whereas the runtime recon-
figurable design requires JBits, a Xilinx specific API for runtime recon-
figuration, the design presented in this paper was written in standard
VHDL. Moreover, in the proposed design, both strings being compared
can be changed rapidly as compared to a runtime reconfigurable system
in which the bitstream must be generated and downloaded, which is typ-
ically a very slow process since a large bitstream must be manipulated
and downloaded via a slow interface. This reconfiguration process may
become a bottleneck, particularly for small databases. Furthermore,
other applications may require both strings to change quickly. The de-
sign was implemented and verified using Pilchard [8], a memory-slot
based reconfigurable computing environment.

2. The Smith-Waterman Algorithm

The Smith-Waterman Algorithm is a dynamic programming technique
which utilizes a 2D table. As an example of its application, suppose that
one wishes to compare sequence S (“ACG”) with sequence T (“ATC”).
The intermediate values a, b and c (shown in Fig. 1.2(b)) are then used
to compute d according to the following forumla:

d = min





{
a if Si = Tj
a+ sub if Si 6= Tj

b+ ins
c+ del

(1.1)

If the strings being compared are the same, the value a is used for d.
Otherwise, the minimum of a plus some substitution penalty sub, b plus
some insertion penalty ins and c plus some deletion penalty del is used
for d. Data dependencies mean that entries d in the table can only be
calculated if the corresponding a, b, c values are already known and so
the computation of the table spreads out from the origin as illustrated in



4

Table 1.1. Figure showing the progress of the Smith-Waterman algorithm, when the
string “ACG” is compared with “ATC”.

A C G

0 1 2 3

A 1 ? ? ?

T 2 ? ? ?

C 3 ? ? ?

(a) Initial table.

Si

a b

Ti c d

(b) Equation 1.1 values.

A C G

0 1 2 3

A 1 0 1 2

T 2 1 2 3

C 3 2 1 2

(c) Final table.

Fig. 1.1. As an example, the first entry that can be computed is that for
“AA” in Fig. 1.2(a). Since Si = T − i = ‘A′, according to Equation 1.1,
d = a and so the entry is set to 0. In order to complete the table, the
template of Fig. 1.2(b) is moved around the table constrained by the
dependencies indicated by Fig. 1.1.

The substitution, insertion and deletion penalties can be adjusted for
different comparison requirements. If the presence of redundant charac-
ters is relatively less acceptable than just a difference in characters, the
insertion and deletion penalties can be set to a higher value than the
substitution penalty. In the alignment system presented, the insertion
and deletion penalties were fixed at 1 and the substitution penalty set
to 2, as is typical in many applications.

If S and T arem and n in length respectively, then the time complexity
of a serial implementation of the Smith-Waterman algorithm is O(mn).
After all the squares have been processed, the result of Fig. 1.2(c) is
obtained. In a parallel implementation, the positive slope diagonal en-
tries of Fig. 1.1 can be computed simultaneously. The final edit distance
between the two strings appears in the bottom right table entry.
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Figure 1.1. Data dependencies in the alignment table. Thick lines show entries which
can be computed in parallel and the time axis is arranged diagonally.

3. FPGA Implementation

In 1985, Lipton and Lopresti observed that the values of b and c in
Equation 1.1 are restricted to a ± 1 and the equation can be simplified
to obtain [9]:

d =




a if ((b or c) = a− 1) or (Si = Tj)

a+ 2 if ((b and c) = a+ 1) and (Si 6= Tj)
(1.2)

Using Equation 1.2, it can be seen that the data elements b, c and d only
have two possible values. Therefore, the number of data bits used for the
representation of b, c and d can be reduced to 1 bit. Furthermore, two
bits can be used to represent the four possible values of the alphabet.

The processing element (PE) shown in Fig. 1.2 was used to implement
Equation 1.2. A number of PEs are then connected in a linear systolic
array to process diagonal elements in the table in parallel. As shown
in Fig. 1.1, PEs are arranged horizontally and are responsible for its
corresponding column. In the description that follows, the sequence that
changes infrequently is S and the sequences from the database are T . In
each PE, two latches are used to store a character Si. These characters
are shifted and distributed to every processing element before the actual
comparison process beings. The base pairs of T are passed through the
array during the comparison process, during which the d of Equation 1.2
is also computed.
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Figure 1.2. The Smith-Waterman processing element (PE). Boxes represent D-type
flip-flops.

In order to calculate d, inputs a, b and c should be available. In the
actual implementation, the new values b, c and d are calculated during
the comparison of the characters as follows:

1 data in is the new value of c and it is stored in a flip-flop. At
the same time, this new c value and the previous d value (from a
flip-flop) determines the new b value ( b = temp c XNOR temp d)

2 The new b value is stored in a flip-flop. At the same time, the
output of a 2-to-1 MUX is then selected depending on whether
Si = Ti. The output of the MUX (a ‘0’ value or (b AND temp c))
becomes the new d value. This new d value is stored in a flip-flop.

3 Values of b and d determine the data output of the PE (data out
= temp b XNOR temp d). The data output from this PE is con-
nected to the next PE as its data input (its new c value)

When the transfer signal is high, the sequence S is shifted through
the PEs. When the en signal is high, all the flip-flops (except the two
which store the string S) are reset to their initial values. The init signal
is high when new signals from the preceeding PE are input and the new
value of d calculated. When the init signal is low, the data in all the
flip-flops are unchanged.

Each PE used 8 flip-flops as storage elements and 4 LUTs to imple-
ment the combinational logic. Thus the design occupied 4 Xilinx Virtex
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Figure 1.3. Two processing elements mapped to 6 Virtex slices.

slices. Guccione and Keller [6] used runtime reconfiguration to write one
of the sequences into the bitstream, saving 2 flip-flops and implement-
ing a PE in 3 slices. In the proposed approach, two otherwise unused
LUTs were configured as shift register elements using the Xilinx dis-
tributed RAM feature [10]. Thus the design occupies 3 Xilinx Virtex
slices per PE, without requiring runtime reconfiguration to change S.
In the actual implemention, 2 PEs were implemented in 6 slices since
sharing of resources between adjacent PEs was necessary in the actual
implementation.

Fig. 1.3 shows the mapping of the PEs to slices. All the signals ending
with “ 1st” were used in PE Number 1, and signals ending with “ 2nd”
were used for PE2. The purpose of each signal can be understood by
referring back to Fig. 1.2. It was necessary to connect the output of the
RAM-based flip-flops directly to a flip-flop (FF in the diagram) in the
same logic cell (LC) since internal LC connections do not permit them
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Figure 1.4. System data path.

to be used independently (i.e. it was not possible to avoid connecting
the output of the RAM and the input of the FF). Thus, Slice 1 was
configured as a 2 stage shift register for consecutive values of Si and
Slice 3 was used for two consecutive values of Ti.

Fig. 1.4 shows the overall system data path. Since the T sequences are
shifted continuously, the system used a FIFO constructed from Block
RAM to buffer the sequence data supplied by a host computer. This
improves throughput of the system since a large number of string com-
parisons can be completed before all of their scores are read from the
controller, reducing the amount of idle time in the systolic array. The
input and output data width of the FIFO RAM were both 64 bits. The
wide input data width helped to improve IO bandwidth from the host
computer to the FIFO RAM. A 64-to-2 shifter and a controller counter
were used for reducing the output data width of the FIFO RAM from
64 bits to 2 bits, so as to allow data to be fed into the systolic array.

The Score Counter computes the edit distance by accumulating results
calculated in the last PE of the systolic array. The output of the last
PE is actually the d value in the squares of the rightmost column of the
matrix, and differences in values of consecutive squares in the rightmost
column must be 1. The dataout of the last PE is ‘0’ when d = b - 1
, and the output ‘1’ when d = b + 1. Therefore, a Shift Counter was
initialized to the length of the sequence S. It was decremented if the
output value is ‘0’, otherwise it was incremented. After the entire string
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Figure 1.5. Photograph of the Pilchard board.

T is passed through the systolic array, the counter contains the final
string comparison score.

4. Results

The design was synthesized from VHDL using the Xilinx Founda-
tion 5.1i software tools and implemented on Pilchard, a reconfigurable
computing platform [8] (Fig. 1.5). The Pilchard platform uses a Xilinx
Virtex XCV1000E-6 FPGA (which has 12288 slices) and uses a SDRAM
memory bus interface instead of the conventional PCI bus to reduce la-
tency.

A total of 4,032 PEs were places on an XCV1000E-6 device (this
number was chosen for floorplanning reasons). As reported by the Xilinx
timing analyzer, the maximum frequency was 202 MHz.

A number of commercial and research implementations of the Smith
Waterman algorithm have been reported and their performance are sum-
marized in Table 1.2. Examples are Splash [11], Splash 2 [12], SAMBA
[13], Paracel [14], Celera [15], JBits from Xilinx [6], and the HokieGene
Bioinformatics Project [7]. The performance measure of cell updates per
second (CUPS) is widely used in the literature and hence adopted for
our results.

Splash contains 746 PEs in a Xilinx XC3090 FPGA performing the
Smith-Waterman Algorithm. Splash 2’s hardware was different from
Splash, which used XC4010 FPGAs with a total of 248 PEs. SAMBA
[13] incorporated 16 Xilinx XC3090 FPGAs with 128 PEs altogether
dedicated to the comparison of biological sequences.

ASIC and software implementations have also been reported. Para-
cel, Inc. used a custom ASIC approach to do the sequence alignment.
Their system used 144 identical custom ASIC devices, each containing
approximately 192 processing elements. Celera Genomics Inc. reported
a software based system using an 800 node Compaq Alpha cluster.
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Table 1.2. Performance and hardware size comparison of previous implementations
(processor core not including system overheads). Device performance is measured in
cell updates per second (CUPS).

System Number of PEs per System Device Run-time

Chips chip Performance Performance reconfiguration

(CUPS) (CUPS) requirement

Splash(XC3090) 32 8 370 M 11 M No

Splash 2(XC4010) 16 14 43 B 2,687 M No

SAMBA(XC3090) 32 4 1,280 M 80 M No

Paracel(ASIC) 144 192 276 B 1,900 M N/A

Celera (software 800 1 250 B 312 M N/A

implementation)

JBits 1 4,000 757 B 757 B Yes

(XCV1000-6)

JBits 1 11,000 3,225 B 3,225 B Yes

(XC2V6000-5)

HokieGene 1 7000 1,260 B 1,260 B Yes

(XC2V6000-4)

This implementation 1 4,032 742 B 742 B No

(XCV1000-6)

This implementation 1 4,032 814 B 814 B No

(XCV1000E-6)

Both the JBits and the HokieGene Bioinformatics Project were the
latest reported sequence alignment systems using the Smith-Waterman
Algorithm and use the same PE design. JBits reported performance for
two different FPGA chips, the XCV1000-6 and the XC2V6000-5. The
HokieGene Bioinformatics Project used an XCV6000-4. As can be seen
from the table, the performance of the proposed design is similar to the
JBits design on the same size FPGA (a XCV1000-6), and the JBits and
HokieGene implementations on an XCV6000 gain performance by fitting
more PEs on a chip, and our performance on the same chip would be
similar.
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The implementation was successfully verified using the Pilchard plat-
form whcih provides a 133 MHz, 64-bit wide memory mapped bus to
the FPGA. The processing elements and all other logic of the imple-
mentation operate from the same 133 MHz clock. The interface logic
occupied 3% of the Virtex device. The working design was used mainly
for verification performance and had a disappointing performance of
approximately 136 B CUPS, limited by the simple polling based host in-
terface used. A high speed interface which performs more buffering and
is able to cause the memory system to perform block transfers between
the host and Pilchard is under development.

5. Conclusion

A technique, commonly used in VLSI layout, in which two processing
elements are merged into a compact cell was used to develop a Smith-
Waterman systolic processing element design which computes the edit
distance between two strings. This cell occupies 3 Xilinx Virtex slices
and allows both strings to be loaded into the system without runtime
reconfiguration. Using this cell, 4032 PEs can fit on a Xilinx XCV1000E-
6, operate at 202 MHz and achieve a device performance of 814 B CUPS.
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