
An FPGA-based Spectral Anomaly Detection
System

Duncan J.M. Moss, Zhe Zhang, Nicholas J. Fraser and Philip H.W. Leong
School of Electrical and Information Engineering

Building J03, The University of Sydney, 2006, Australia

Abstract—Anomaly detection based on spectral features is ap-

plicable to a diverse range of problems including prognostic and

health management, vibration analysis, astronomy, biomedical

engineering and computational finance. The input data could

be regularly sampled, as in the case of a standard analogue

to digital converter sampling a bandlimited signal at above the

Nyquist rate, or irregularly sampled, as in the case of stock

quotes or astronomical data. In this paper, we present new online

algorithms for the computation of power spectra for regularly

or irregularly sampled data, and performing anomaly detection

on time series data. Both algorithms allow hardware implemen-

tations with O(1) time complexity, this being the minimum for

any system that considers all the samples. We combine the two

algorithms to form a power Spectrum-based Anomaly Detector

(SAD). We also describe an implementation of SAD which has

minimal hardware requirements, and achieves one to two orders

of magnitude improvement in speed, latency, power and energy

over a traditional processor-based design.

I. INTRODUCTION

Time is of the essence when processing data streams.
Efficient processing can mean the difference between good and
bad decisions. Real-time data mining and machine learning
techniques have long been applied to fields ranging from fore-
casting financial markets to autonomous vehicles to adaptive
processing and machine prognostics. For any application, the
premise of machine learning is the same: a computer system
will learn to model future outcomes based on previously
acquired data.

Although there has been considerable recent progress in
addressing how to scale offline systems to match the rapidly
increasing quantities of data, real-time learning remains a
challenge. New algorithms and computer architectures are
needed as current implementations based on general-purpose
computing are not able to process data with sufficiently
low latency or high throughput. Such systems require online
learning in which the machine learning model can be updated
upon receiving new data without extensive recomputation.

Field Programmable Gate Array (FPGA) technology has
a distinct advantage in such applications as it offers a more
direct way to implement a given algorithm than interpreting an
instruction stream, as done on multicore, cluster and Graphics
Processing Unit (GPU) based systems. Higher degrees of
parallelism can be achieved through replication of computing
units, pipelining and reducing instruction execution overhead.
Moreover, FPGAs offer the potential to more tightly integrate
machine learning with the lower level data acquisition and/or

networking hardware, reducing buffer sizes and better opti-
mising latency.

The power spectrum is often used as a feature in applica-
tions including machine prognostics [1], astronomy [2] and
computational finance [3]. In some applications, it is either
impossible to sample at uniform intervals, e.g. astronomical
observations [2], or data points are sampled at irregularly
spaced intervals e.g. financial tick data [3]. In this paper, we
address the problem of extracting power spectra in a hardware
and time efficient manner, for both uniformly sampled and
irregularly sampled data.

Anomaly detection is the problem of identifying data which
is not in accordance with expected behaviour, and is used in
fields such as telecommunications, epidemiology, molecular
biology, astronomy, quality control, finance and reliability.
Common applications include intrusion detection, credit card
fraud detection, medical and public health data analysis, indus-
trial damage detection, image processing, email spam filtering,
and sensor networks [4].

In this paper, we present an FPGA-based, unsupervised,
online spectral based anomaly detection system for time series
data. In order to minimise latency and maximise throughput,
the system is designed to update its state in time complexity
O(1) when given a new sample, this being the asymptotic
minimum complexity of any technique which considers all
the input data. The contributions of this work are:

• An online power spectrum computation technique which
dramatically reduces latency compared to one using the
Discrete Fourier Transform (DFT) or Fast Fourier Trans-
form (FFT), for both regularly and irregularly-sampled
time series data.

• An efficient algorithm for anomaly detection on time
series data.

• The first integrated power Spectral Anomaly Detection
(SAD) system which is optimised for efficient FPGA
implementation, and intended for real-time embedded and
large-scale streaming data mining applications.

• To the best of our knowledge, this is the first paper
demonstrating the feasibility of high-speed SAD appli-
cations.

The remainder of the paper is organised as follows. In
Section II, previous work in spectral estimation and online
anomaly detection is reviewed. In Section III, we propose a
new hardware-efficient algorithms for extracting the power
spectrum from a multivariate time series, and performing

978-1-4799-6245-7/14/$31.00 ©2014 IEEE 175

anomaly detection. The FPGA implementation of the algo-
rithm is described in Section IV and results are presented in
Section V. Finally, conclusions are given in Section VI.

II. BACKGROUND

A. Power Spectra of Irregularly Sampled Time Series

The standard tool for calculating power spectral density is
the DFT. For an N -point time series xn, n = {0, 1, . . . , N�1}
sampled at uniformly spaced time points, the DFT is defined
as:

Xk =

N�1X

n=0

xne
�j2⇡kn/N (1)

Though computing Eq. (1) for frequency bins k =

{0, 1, . . . , N � 1} is most common, the frequency resolution
can be arbitrarily chosen, particularly useful for the purpose of
estimating power spectra. We define a frequency domain res-
olution of M bins uniformly distributed across the frequency
range of ! 2 (�⇡,⇡) where ! = 2⇡k/N (in radians per
sample).

As a function of !, Eq. (1) can be rewritten as:

X(!) =

N�1X

n=0

xne
�j!n (2)

The periodogram or normalised power for frequency ! is
commonly computed from the squared magnitude of X(!):

P (!) = | 1
N

X(!)|2 (3)

For the generalised univariate time series xn = x(tn) with
arbitrarily spaced but strictly increasing sampling times tn,
Eq. (2) may be used by replacing the time index n in complex
exponent by the samples observation time tn:

X(!) =

N�1X

n=0

xne
�j!tn (4)

and ! is in radians per unit time tn. We compute over
uniformly spaced frequency bands ! = 2⇡j/M , and j =

{0, 1, . . . , (M � 1)}. The power based on (4) is known as
the classical Fourier periodogram.

Compared with the classical periodogram, Least-Squares
Spectral Analysis (LSSA), otherwise known as the Lomb-
Scargle periodogram, generally produces better and more ac-
curate power spectra by including compensation terms which
reduce the effect of global aliasing due to non-uniform sam-
pling [2], [5]. However, Scargle also stated that the Lomb-
Scargle periodgram typically does not differ significantly from
the classical periodgram [2]. Since the full Lomb-Scargle
periodogram is approximately 3-4 times more expensive to
compute, and its output is subsequently discretised into a small
number of symbols, it is safe to assume that the classical
periodogram will be a sufficiently good approximation.

To further reduce computational and book keeping costs, an
exponentially decaying weight is applied, replacing the fixed-
width sliding window.

X(!) = (1� �)
N�1X

n=0

�N�1�nxne
�j!tn (5)

where � is the exponential weighting factor � 2 (0, 1).
Given a particular choice of sample half-life � (in number of
samples), � is related to � by ��

=

1
2 .

As the number of samples N increases towards infinity, the
sum of exponential weights will converge to:

lim

N!1

NX

n=0

�N�n
=

loge�

� � 1

Z 1

0
�ndn =

1

1� �

and hence the normalisation by its inverse (1� �).

B. Anomaly Detection

A number of comprehensive surveys, including those of
Chandola et. al [4], Patcha and Park [6], Agyemang et. al. [7],
and Hodge and Austin [8], have been published. In this sub-
section, we review FPGA-based anomaly detection systems.

Perhaps the best known systems in the reconfigurable com-
puting literature is network intrusion detection. This requires
operation at network line speeds, where the advantages of
FPGAs are clear. Das et. al [9] proposed a system based on
feature extraction and Principle Component Analysis (PCA)
to identify anomalies. Their architecture could support data at
over 20 Gbps. The PCA part of the system was performed in
an offline manner.

Carter et. al. [10] has proposed an Exponentially Weighted
Moving Average (EWMA) method where an anomaly is
detected when the absolute value of the difference between the
local mean and the input data sample exceeds the estimated
standard deviation times a constant multiplier. This results
in an effective and robust method that quickly adapts to
distributional data shifts. It has an update time complexity
O(1), making it suitable for a low latency, high throughput
implementation. Unfortunately, it only considers the simple
mean value and cannot track changing sequences of patterns
in the data.

III. ALGORITHMS

In this section, we present our reformulations of existing
power spectra and anomaly detection algorithms to facilitate
efficient FPGA-based SAD implementations.

A. Power Spectra of Irregularly Sampled Time Series

While the FFT is commonly used as an efficient algorithm
to compute the DFT, it is not optimal for real-time applications
which require low latency and/or fast output update rates. In
the case of computing Eq. (5), it is desirable to have the power
updated as soon as a new sample is available, with the least
amount of computation possible. We observe that the DFT at
the time of sample number N with adjusted time reference is:

X(!, N) = (1� �)
NX

i=0

�N�ixie
�j!(ti�tN) (6)

176

Fig. 1. Signal transformation: Quantisation

Using the latest sample time tN as the zero time reference is
intuitive for online data streaming and this phase shift has no
effect on the magnitude of power.

Then it is quite simple to manipulate and express Eq. (6)
as a recursive function of its previous value at N � 1:

X(!, N) = (1� �)
N�1X

n=0

�N�ixne
�j!(tn�tN)

+

(1� �)xNe�j!(tN�tN)

= X(!, N � 1) � ej!(tN�tN�1)
+

(1� �)xN (7)

The phase shift is based on the time lapsed after the previous
update, �t = tN�tN�1 and does not depend on any absolute
time reference. Updates require O(1) computation.

The power is then computed by:

P (!, N) = |X(!, N)|2 (8)

Note that while we choose to use M evenly spaced frequen-
cies in this work, the algorithm allows for the selection for an
arbitrary number frequencies. Non-uniform spacings may be
advantageous in some applications.

B. Anomaly Detection

The anomaly detector employed in this work is based
on an algorithm proposed by Kumar et. al. [11]. The nu-
merical input is first quantised to a discrete representation.
While Kumar et. al. used Symbolic Aggregate approXimation
(SAX) [12], which generates symbols which are approximately
equiprobable, this requires two passes through the data. Our
implementation processes the data in a single pass by taking
the most significant b-bits of the data. This process is illus-
trated in Fig. 1, using an 4 symbol alphabet, represented by
the symbols a-d. The signal string output is ccbabcd.

Bitmaps are then constructed from the time series of sym-
bols in a window of size W . The frequency of all contiguous
sequences of length-d symbols (i.e. all d-grams) is calculated,
and used as entries in a

p
(bd) ⇥

p
(bd) array. This can be

considered a bitmap with colours representing the different

Fig. 2. Signal transformation: generation of bitmap for input edcbcbacff.

counts, or a single dimensional array of size bd. For example,
considering the time series in Fig. 1 and d = 2, Fig. 2
illustrates the resulting bitmap for all adjacent pairs, the entries
containing their frequency.

To form detector and reference bitmaps, BMD and BMR,
time series bitmaps are calculated for windows of two different
sizes, WD and WR respectively. Typically, WR is much larger
than WD. These are then compared by computing the sum of
squared differences between these two bitmaps considered as
one dimensional arrays, to arrive at a final score i.e.

s =
bd�1X

i=0

(

BMR[i]

WR � 1

� BMD[i]

WD � 1

)

2. (9)

Each frequency count is normalised by dividing by W � 1 to
allows for the two differently sized windows to be compared.

The anomaly detection is conducted over M channels,
resulting in M scores sj (j = 0 . . . (M�1)). The consolidated
anomaly score is simply

a =

1

M

X

j

sj (10)

and an anomaly is detected if

anomaly =

⇢
TRUE a > l
FALSE otherwise

(11)

where l is a user-defined threshold.
While summation was used to aggregate anomaly scores

over the channels, many alternative techniques are available.
For example, the max function could result in more sensitive
detection. This will be explored further in future work.

IV. IMPLEMENTATION

Fig. 3 is a block diagram illustrating the implementation.
The Recursive Non-Uniform Discrete Fourier transform (RD)
takes the input time series and generates M time series of
power levels at different frequencies. The individual channels
are passed to M parallel anomaly detectors which perform
signal discretization (SD), bitmap generation (BM) and score
calculation (C).

The implementation is described in Alg. 1 and parame-
terised according to Tab. IV, any of which can be modified
at compile time. Since the M frequency components can

177

Fig. 3. Block diagram of power spectra anomaly detection system implemen-
tation.

be computed independently, the computation complexity can
range from O(1) in which all channels are processed in
parallel, to O(M) when they are processed one channel at
a time.

In our implementation, several further optimisations are
applied:

1) Computation of the exponential ej!j�t avoided by using
a 512-entry lookup table and all computation is done in
fixed point with wordlength L.

2) The score computation in the last line of Alg. 1 is
computed incrementally as follows. For each iteration,
the only entries that have changed in BMR are those
for dR and iD. Similarly for BMD, the only entries
that have changed are dD and iD. Since the remaining
entries have been unchanged, the score can be updated
incrementally from these values by subtracting the old
squared difference term and adding back the new one.
This computation requires six addition/subtractions and
six multiplications for each of the four changed indices.

3) We choose combinations of the L, b and d parameters
so that the number of bits of memory, L ⇥ bd, is less
than the size of a block memory on the FPGA.

TABLE I
DEFAULT PARAMETERS FOR THE SAD IMPLEMENTATION.

Parameter Description Default

L Global wordlength 16
� Recursive DFT decay rate 0.995

WD Detector window length 9
WR Reference window length 33
M Number of frequency channels 4-32
b Number of symbols in alphabet 8
l Anomaly threshold 0.5
d Bitmap level 2

V. RESULTS

This section describes the resource utilisation, performance
and accuracy of the implementation. The implementation was
created in Xilinx Vivado HLS 2013.4. The target device was
a Xilinx Virtex 7 XC7VX690TFFG1930-3.

In an effort to promote reproducible research, our imple-
mentation is available from reference [13]. The University
of California Riverside (UCR) datasets used in our paper are
available from reference [14].

A. Resource Utilisation and Performance

Default parameters as summarised in Tab. I were used to
create an M = 1 design. This was synthesised to obtain
the FPGA resource utilisation summarised in Tab. III. Vivado
reported an initiation interval of 10 clock cycles, a latency of
17 cycles and a maximum frequency 250 MHz. Projections
for the performance of multiple channels are given in Tab. II.

The datapath for the design requires a total of 14 L-bit
fixed-point multpliers, 3 subtractors, and 10 adders, and is
independent of the other parameters. The total memory in bits
required for the design is 2MLbd + L(WR +WN). The first
term accounts for the reference and detection bitmaps, and the
second for window buffers.

As can be seen from Tab. III, DSP resources restrict the
maximum number of parallel designs to approximately 256.
However, designs can go beyond this value using lookup table
(LUT) resources. The next limit are BlockRAMs which limit
M to approximately 1000.

The same C implementation used to synthesise the FPGA
design was compiled using gcc version 4.6.3 with -O3 com-
piler flag. Execution speed was tested on a 1.6 GHz Intel Core
i5 Sandy Bridge processor (CPU) with 4 GB of memory,
3 MB cache and using the Mac OSX Mavericks Operating
System. CPU execution time was recorded by appropriately
instrumenting the program using the high resolution Linux
timer. Both FPGA and CPU results do not include input/output
overheads and the effect of other peripheral devices has been
taken into account.

B. Power and Energy Consumption

The Vivado Power Report estimates the M = 1 design
running at 250 MHz to have a power consumption of 0.3 W ,
99% of this being static power. In comparison, the same

178

Algorithm 1 Online SAD.
procedure ANOMALY(x, �t) . called for each new sample xi

for j in 0 : (M � 1) do . Over all frequencies
Xi Xi�1�e

j!j�t
+ (1� �)xi . Calculate updated recursive DFT for frequency !j = 2⇡j/M

Pi |Xi|2 . Calculate power spectra
Qi shiftr(Pi, (L� log2 b� 1)) . Quantize Xi by shifting right
dR index for substring Qi�WR+1 . . . Qi�WR+b . This substring drops out of reference window
dD index for substring Qi�WD+1 . . . Qi�WR+b . This substring drops out of detector window
decrement BMR[dR] . Account for substring dR dropping out
decrement BMD[dD] . Account for substring dD dropping out
iD index for substring Qi�b+1 . . . Qi . This is the new substring index
increment BMD[iD] . Account for new substring in BMD

increment BMR[iD] . Account for new substring in BMR

Si ssd(Si�1, BMD, BMR, dD, dR, iR) . Incrementally compute score according to (9)
end for

end procedure

TABLE II
COMPARISON OF FPGA SAD IMPLEMENTATION COMPARED WITH A C

IMPLEMENTATION, DISREGARDING INPUT/OUTPUT. TIMES REPORTED ARE
TO PROCESS A SINGLE DATA INPUT.

M Througput Latency CPU Throughput Latency
Time Speedup Reduction

1 40 ns 68 ns 34 ns 0.9⇥ 0.5⇥
4 40 ns 68 ns 273 ns 7⇥ 4⇥
8 40 ns 68 ns 544 ns 14⇥ 8⇥

16 40 ns 68 ns 1085 ns 27⇥ 16⇥
256 40 ns 68 ns 17969 ns 449⇥ 264⇥

TABLE III
RESOURCE UTILISATION FOR M = 1. NUMBERS IN PARENTHESES

INDICATE THE AVAILABLE RESOURCES ON THE CHOSEN FPGA.

LUTs Flip Flops BlockRAM DSP

220 (433200) 541 (866400) 3 (2940) 14 (3600)

processor used for the speed tests draws 1.50 W , making
the FPGA approximately 5⇥ more power efficient. The CPU
requires 34 ns which is similar to that of the FPGA, making
the energy efficiency approximately 4.25⇥ better. For larger
values of M , energy efficiency is significantly higher.

C. Verification of SAD

The correctness of the implementation was verified via
simulation using Vivado. The utility of the SAD algorithm
for detecting anomalies is demonstrated in this section by
testing on three different types of time series data [14]: the
Marotta space shuttle valve, tracking in a 2D video and an
electrocardiogram (ECG).

Each dataset was sourced from the online repository main-
tained by Keogh et al. [14]. Unless specified otherwise, the
parameters for SAD were determined by a grid search over
a range of values and the accuracy was determined by com-
paring detected anomalies with anomalies known a-priori. If

two configurations produced very similar anomaly scores, the
configuration which reduced the computational requirements
was chosen.

As an example of automated machine prognostics, we used
the Marotta space shuttle value time series. Fig. 4 shows a
selected subset of the time series along with the aggregated
anomaly score using SAD with parameters M = 64, � =

0.95,WR = 5000,WD = 1000 and b = 4. It can be seen in
the figure that there are two regions of anomalous behaviour.
Between sample 500-1000, the score is increased due to the
presence of noise and the first large spike around sample 400.
From sample 4100-5000, an unexpected notch is present. The
dotted line represents the user-defined threshold l set to 0.5.
Fig. 5 shows the corresponding power spectra and the anomaly
spectrum (these are best viewed in colour). It can be seen that
the anomaly spectra forms distinct patterns in each of the two
anomalous regions.

The SAD parameters for the 2D video hand tracking time
series were M = 16, � = 0.99,WR = 600,WD = 100 and
b = 8. Fig. 6 shows a selected subset of the time series
along with the aggregated anomaly score using SAD. The
individual channels are shown in Fig. 7. The anomaly around
2000 clearly causes an increased anomaly score in the low and
high frequency channels, and potential for using scores over
different frequency channels is apparent.

As a final example, wearable electronics have been in-
creasing in popularity, personal health monitoring technology
seems likely to be available to consumers in the coming years.
As such, low power, automated health monitor hardware will
become increasingly important. In this test, real ECG data
was used to simulate this application. A selected portion
of the ECG time series is shown in Fig. 8 along with
the anomaly score. SAD parameters were M = 16, � =

0.9,WR = 300,WD = 100 and b = 8. Around sample 1100,
a distinct peak appears in the anomaly score corresponding to
a premature ventricular contraction with a difference of 2⇥
between the anomaly discord and the rest of the signal. This
allows for a large range of possible threshold values suitable

179

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

−0.5

0

0.5

1

Marotta Dataset

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

Anomaly Score

Fig. 4. Detection of an anomaly in the Marotta space shuttle valve time series. The raw data is shown as well as an aggregated anomaly score.

1000 2000 3000 4000 5000

5

10

15

20

25

30

1000 2000 3000 4000 5000

5

10

15

20

25

30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Power Spectra/Time Individual Frequency Anomaly Score/Time

Fr
eq

ue
nc

y
B

an
d

Samples Samples

Fr
eq

ue
nc

y
B

an
d

Fig. 5. Power and anomaly spectrum for the Marotta space shuttle valve time series.

for identifying the anomaly.

VI. CONCLUSION

In this paper, new online algorithms for Spectral Anomaly
Detection (SAD) were proposed which lead to efficient hard-

ware implementations. We further showed that our implemen-
tations offer one to two orders of magnitude improvement
in speed, latency, power and energy over a single threaded
implementation compiled from the same C source code.

Our work demonstrates the feasibility of addressing severely

180

0 500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1

Hand Tracking Dataset

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Anomaly Score

Fig. 6. Hand tracking in a 2D video. The raw data is shown as well as an aggregated anomaly score.

500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8

500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Power Spectra/Time Individual Frequency Anomaly Score/Time

Fr
eq

ue
nc

y

Samples Samples

Fr
eq

ue
nc

y

Fig. 7. Power and anomaly spectrum for the hand tracking time series.

constrained real-time SAD applications using FPGA technol-
ogy. We believe that there are abundant opportunities for the
application of this work in prognostics and health manage-
ment.

In future work, we will: study alternative ways to consol-
idate the anomaly scores over different frequencies; test on

irregular time series; test against multicore implementations;
optimise FPGA hardware utilisation for better performance
and devise better techniques for automatically determining
parameters for our SAD implementation.

181

0 500 1000 1500
�1

�0.5

0

0.5

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Electrocardiogram

Anomaly Score

Fig. 8. Detection of an anomaly in ECG data. The raw data is shown as well as an aggregated anomaly score.

ACKNOWLEDGEMENT

This research was partially supported by Australian Re-
search Councils Linkage Projects funding scheme (project
numbers LP110200413 and LP130101034).

REFERENCES

[1] P. Hayton, S. Utete, D. King, S. King, P. Anuzis, and
L. Tarassenko, “Static and dynamic novelty detection methods
for jet engine health monitoring.” Philos Trans A Math
Phys Eng Sci, vol. 365, no. 1851, pp. 493–514, 2007.
[Online]. Available: http://www.biomedsearch.com/nih/Static-dynamic-
novelty-detection-methods/17255049.html

[2] J. D. Scargle, “Studies in astronomical time series analysis. ii-statistical
aspects of spectral analysis of unevenly spaced data,” The Astrophysical
Journal, vol. 263, pp. 835–853, 1982.

[3] S. A. Pasha and P. H. Leong, “Cluster analysis of high-dimensional high-
frequency financial time series,” in IEEE Symposium on Computational
Intelligence for Financial Engineering & Economics - (CIFEr), 2013,
pp. 68–75.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing.
New York, NY, USA: Cambridge University Press, 1992.

[6] A. Patcha and J.-M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends,” Comput.
Netw., vol. 51, no. 12, pp. 3448–3470, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2007.02.001

[7] M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey
of numeric and symbolic outlier mining techniques,” Intell. Data
Anal., vol. 10, no. 6, pp. 521–538, Dec. 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1609942.1609946

[8] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, Oct. 2004. [Online].
Available: http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

[9] A. Das, D. Nguyen, J. Zambreno, G. Memik, and A. Choudhary,
“An FPGA-based network intrusion detection architecture,” Information
Forensics and Security, IEEE Transactions on, vol. 3, no. 1, pp. 118–
132, March 2008.

[10] K. M. Carter and W. W. Streilein, “Probabilistic reasoning for streaming
anomaly detection,” in Statistical Signal Processing Workshop (SSP),
2012 IEEE. IEEE, 2012, pp. 377–380.

[11] N. Kumar, V. Lolla, and E. Keogh, “Time-series Bitmaps:
a Practical Visualization Tool for Working with Large
Time Series Databases,” in SIAM International Conference
on Data Mining, 2005, pp. 531–535. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.55

[12] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A Symbolic Representa-
tion of Time Series, with Implications for Streaming Algorithms,” in
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, 2003, pp. 2–11.

[13] D. J. Moss, Z. Zhang, N. J. Fraser, and P. H. Leong, “Spectral
anomaly detector: Online repository,” 2014. [Online]. Available:
https://github.com/djmmoss/SAD

[14] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana, “The ucr time
series classification/clustering homepage,” 2011. [Online]. Available:
http://www. cs. ucr. edu/˜ eamonn/time series data

182

1

Errata for

An FPGA-based Spectral Anomaly Detection
System
in proceedings of

International Conference on Field Programmable Technology,
ICFPT 2014, Shanghai

Duncan J.M. Moss, Zhe Zhang, Nicholas J. Fraser and Philip H.W. Leong

In Section V part B, the power consumption was incorrectly reported. The sentences

In comparison, the same processor used for the speed tests draws 1.50 W , making the FPGA approximately 5× more power
efficient. The CPU requires 34 ns which is similar to that of the FPGA, making the energy efficiency approximately 4.25× better.

should be changed to

In comparison, the same processor used for the speed tests draws 11.25 W , making the FPGA approximately 37.5× more
power efficient. The CPU requires 34 ns which is similar to that of the FPGA, making the energy efficiency approximately
33.75× better.

	tsa_fpt14
	fpt_errata

