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Abstract

Virtual Private Networks (VPN) are becoming in-
creasingly popular network architectures for corporate
networks. As VPNs are built on the Internet infras-
tructure, the data exchange among different local area
networks will be passed through the Internet and thus
can be easily eavesdropped, masqueraded, etc. There-
fore, certain security measures must be used to deal
with these privacy issues. The Internet Protocol Se-
curity (IPSec) by the Internet Engineering Task Force
(IETF) addresses the abovementioned security issues
and the Free Secure Wide Area Network (FreeS/WAN)
is an open source software implementation of IPSec
for Linux which uses triple-DES as the default encryp-
tion mode.

As shown in this paper, the performance of
FreeS/WAN with IPSec is 50% of that without encryp-
tion. In order to improve its performance, a field pro-
grammable gate array (FPGA) based triple-DES accel-
erator was built on a reconfigurable computing develop-
ment platform called Pilchard and achieved a through-
put of more than 120 Mb/sec for triple-DES in cipher-
block chaining mode, a speedup of 3 over a software
implementation. Measurements show that an FPGA-
accelerated FreeS/WAN offers a 30% speedup for the
TCP protocol over the original software library.

1 Introduction

Virtual Private Networks (VPNs) are an architec-
ture to realize connections among different private net-
works over a public network. For example, the Inter-
net can be used as a convenient and low cost chan-
nel for a virtual private network. The Internet is a
public channel and is not secure. Cryptographic al-
gorithms provide a way to provide a secure commu-

nications channel between private networks over the
insecure public network.

Field-Programmable Gate Arrays (FPGAs) are
hardware devices which are reconfigurable, i.e. pro-
gramming an FPGA can change its functionally. Im-
plementations of cryptographic hardware using FP-
GAs offer higher performance than software imple-
mentations since higher degrees of parallelism can be
achieved. Compared with traditional implementations
using application specific integrated circuits (ASICs),
FPGAs offer several advantages:

• With FPGAs, it is possible to reconfigure the chip
for different encryption standards on demand.
This means that unused encryption schemes need
not reside on the FPGA, saving resources. In con-
trast, all supported encryption schemes must re-
side on an ASIC.

• It is possible to offer field upgrades for FPGA
based systems to support bug fixes and new stan-
dards.

• FPGAs offer lower costs for small volumes,
shorter development times and faster time to mar-
ket over ASIC technology.

• The performance of FPGA accelerator can be im-
proved by replacing an existing device with a
faster one and does not involve any further en-
gineering.

The main aim of this work was to develop an FPGA
based accelerator for VPNs. The main aims of this
work were as follows:

• Provide a high performance hardware accelera-
tor for triple-DES in Cipher-Block Chaining mode
using the Pilchard reconfigurable computing plat-
form.



• Devise a hardware accelerator which is fully com-
patible with an existing software cryptographic
library for use in other applications.

• Explore system issues associated with developing
a hardware accelerator for a VPN which is inte-
grated in a real network application.

• Measure the end-to-end performance of an FPGA
accelerated VPN and compare it with a purely
software implementation.

The rest of this paper is organized as follows. In
Section 2, previous work on VPN implementations are
reviewed. Section 3 describes the DES and triple-DES
algorithms. The implementation of our triple-DES ac-
celerator on the Pilchard FPGA platform is described
in Section 4 and results are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2 Previous Work

2.1 Commercial VPN solutions

There are several existing software and hardware
based commercial VPN products. Although different
products may have different built-in cryptographic al-
gorithm options, triple-DES is available in all of the
VPN solutions described below.

Cisco Systems Inc. have a range of VPN solutions
with different specifications. Cisco model 3015 uses
software encryption and hence has a relatively low
throughput of 4 Mb/sec. In Cisco 5000 series VPN
solutions, different numbers of encryption processors
can be used. For the highest throughput VPN solu-
tion in this series, 760 Mb/sec triple-DES operation is
achieved using eight encryption processors.

Intel Corp. provides two VPN solutions using soft-
ware encryption with throughputs of 8 Mb/sec and 20
Mb/sec using triple-DES. Intel’s 3125 VPN gateway
uses a PCI encryption processor and has a through-
put of 85 Mb/sec for triple-DES.

2.2 Implementations of DES and triple-
DES

Software implementations of DES and triple-DES
by Biham [1] achieved 46 Mb/second and 22 Mb/sec
respectively on a 64-bit 300 MHz Alpha processor. A
commonly used open source implementation of DES,
LibDES [2] achieves 121.5 Mb/sec for DES ECB mode
on an Intel Pentium III 866 MHz machine. LibDES
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Figure 1: Cipher-block chaining (CBC) mode.

also achieves 42.9 Mb/sec for triple-DES CBC mode
on the same machine.

Hardware implementations offer much higher per-
formance than software. In 1999, Free-DES [3], a 3656
Mb/sec implementation of DES algorithm on Xilinx
Virtex XCV400-6 with 60 MHz clock rate was re-
ported. A 1280 Mb/sec implementation of DES was
reported in 1999 [4] by Wilcox et. al. Sandia National
Laboratories developed an ASIC implementation of
DES [4] which achieved 6700 Mb/sec. A Xilinx Virtex
based DES implementation [5] was proposed by Pat-
terson which achieves 10752 Mb/sec. This implemen-
tation operates at a 168 MHz clock rate and employs
dynamic circuit specialization in an FPGA to achieve
high performance. Trimberger et. al [6] employed even
deeper pipelining to achieve a 12 Gb/sec performance
on a Xilinx Virtex device.

It should be noted that previous high performance
hardware implementations of DES maximize their
throughput by unrolling and pipelining the design in
ECB mode. However, for improved security, feedback
modes such as cipher-block chaining (CBC) are em-
ployed. In the CBC mode of operation, every plaintext
block is exclusive-ORed with the previous ciphertext
block before being encrypted (see Figure 1). Since the
input is dependent on the previous output, pipelining
does not offer the same advantage as for ECB mode
and so the performance of the CBC mode of operation
is much lower than that of ECB mode.



3 The Data Encryption Standard Al-
gorithm (DES)

The Data Encryption Standard (DES) [7, 8] algo-
rithm is the most widely used secret key encryption
algorithm. It was the first commercial cryptographic
algorithm with fully specified implementation details.
Although introduced in 1976, it has proven resistant
to all forms of cryptanalysis. A major disadvantage
of DES is that its 56-bit key is not large enough by
today’s standards. A DES key search engine called
“Deep Crack” which can search 88 billion keys per
second was able to solve the RSA laboratories DES-
III challenge [9] (which involves finding the key of a
DES encrypted message) in 22 hours.

DES is a block cipher as shown in Figure 2 which
processes 64-bit plaintext blocks and produces 64-bit
ciphertext blocks. The effective portion of the secret
key is 56-bit out of 64-bit since although the key is
64-bit, 8-bits are used as parity bits.

DES encryption proceeds in 16 identical rounds.
From the input key, sixteen 48-bit subkeys Ki (one for
each round), called the key-schedule, are generated via
a series of left shifts and permutations. Within each
round, 8 fixed 6 to 4-bit substitution mappings known
as S-Boxes are used.

The plaintext has an initial bit permutation (IP)
and is then divided into left L0 and right halves R0,
each 32-bits in size. Each round takes 32-bit inputs
Li−1 and Ri−1 from previous rounds and produces 32-
bit outputs Li and Ri for 1 ≤ i ≤ 16, as follows:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki) (1)

where f(Ri−1,Ki) = P (S(E(Ri−1) ⊕ Ki)), E is a
fixed expansion permutation mapping Ri−1 from 32-
bits to 48-bits and P is a fixed permutation on 32-
bits. The right half of each round goes through an
expansion permutation from 32-bits to 48-bits and is
then exclusive-ored with the subkey of that round.
The temporary result is passed through an S-Box and
forms the new 32-bit product of the right half. For
each round, right half and left half are exchanged. Fi-
nally both halves are combined together in the 16th
round and permuted by the inverse of the initial bit
permutation to form the ciphertext.

Decryption uses the same key and algorithm, how-
ever, the subkeys in internal rounds are applied in re-
verse order. For encryption, the key schedule order is
K1,K2,K3, . . . ,K16. For decryption, the decryption
key schedule is K16,K15,K14, . . . ,K1.
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L0 R0

f
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L1=R0 R1=L0 XOR f(R0,K1)
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Figure 2: Data Encryption Standard algorithm

3.1 The Triple-DES Algorithm (3DES)

The triple-DES algorithm [10] was introduced to
increase the key size of DES while maintaining com-
patibility with legacy DES software and hardware sys-
tems. For encryption, the plaintext is passed through
three cascaded DES cores as shown in Figure 3. Note
that the first and the last DES cores are in encryp-
tion mode and the second one is in decryption mode.
If the same key is used for K1 and K2, triple-DES is
the same as DES with key K3. For decryption, the
modes are inverted so that the first and the last DES
cores are in decryption mode and the middle one is in
encryption mode. The triple-DES algorithm increases
the key size by a factor of three compared to DES,
i.e. from 56-bits to 168-bits. However, the processing
time is increased by the same factor.
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Figure 4: Picture of Pilchard

4 Implementation

4.0.1 Pilchard Platform

The FPGA platform used was a Pilchard FPGA
card (Figure 4) [11] populated with a Xilinx Virtex
XCV1000E-6 FPGA. Pilchard uses a 64-bit SDRAM
memory bus interface instead of the conventional PCI
bus and has much improved latency and bandwidth
over the standard PCI bus.

4.1 Triple-DES in CBC mode

4.1.1 Hardware

The triple-DES core (Figure 5) was formed by cas-
cading three combinational DES cores. Although the
triple-DES core is combinational, an external finite
state machine was used to determine the readiness of
input and output. The triple-DES core operates at
2.135 MHz and the external finite state machine works

Input
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Control
Register
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DIMM RAM Interface
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Key Register
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Figure 5: System architecture of triple-DES accelera-
tor

at 50 MHz which is the system clock (100 MHz) di-
vided by two.

4.1.2 Software Interface

A polled interface was used for data transfer between
the host computer and the Pilchard board. For ef-
ficiency reasons, transfers are made to the Pilchard
board in blocks of 248 64-bit words. In order to per-
form an encryption or decryption, the data are first
transferred to the board, the core is then asked to en-
crypt/decrypt the data. The host polls the core for a
completion signal after which it can transfer the block
of processed data back to the host. Note that the
completion signal is produced before all the data have
been processed. The completion signal is timed so
that if the host starts reading at that time, computa-
tion of the unprocessed data will finish before the host
reads it. Note that this scheme is only able to partially
overlap communications and computation. However,
as will be shown in Section 5, the main system bottle-
neck is in the triple-DES core.

In order to integrate the hardware accelerated
Pilchard triple-DES core into the FreeS/WAN VPN
software, the LibDES library was first modified to call
the hardware accelerated Pilchard triple-DES core in-



Table 1: Configuration of benchmark machine.

CPU P-III 866
RAM 128 MB
Motherboard Asus CUSL2

(Intel 815EP chipset)
Network card 3COM 590 (100 Mb/sec)
OS Mandrake v7.2 with kernel 2.2.16

stead of the software version. Since FreeS/WAN ma-
nipulates IPSec packets directly in the Linux kernel,
both user mode and kernel mode versions of LibDES
were required. The user and kernel mode functions
differ in the representation of memory address map-
ping for Pilchard. In user mode, a virtual address is
used in interface for Pilchard, however, direct access
to a physical address is used in kernel mode.

The architecture of the VPN and IPSec protocols in
FreeS/WAN was unchanged, therefore no major mod-
ifications to FreeS/WAN were required. One minor
issue was that in FreeS/WAN, the triple-DES keys
are first processed and stored in the form of a key-
schedule. In contrast, in the triple-DES core, the key
should be a raw-key.

The host interface of the triple-DES accelerator on
Pilchard could be modified to accept a key schedule
instead of the key. However, this approach would re-
quire 12 times more data to be transferred and is thus
inefficient. The solution adopted was to modify Lib-
DES to accept a raw key instead of a key-schedule.

5 Results

In this section, results are presented. Firstly, the
testing environment is introduced. This is followed
by performance results for the triple-DES accelerator.
Finally, benchmark results obtained using the FPGA-
accelerated version of FreeS/WAN are presented.

5.1 Benchmarking environment

Two computers with identical configuration were
used for benchmarking and obtaining all the results.
These two computers connect to a 100 Mbit network
via a hub running FreeS/WAN version 1.5 with Linux
Kernel 2.2.16 as shown in Table 1.
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Figure 6: Architecture of the DES core with 1, 4 and
16 combinational rounds.

5.2 Performance of Triple-DES Core

The triple-DES processor on Pilchard was synthe-
sized using Synopsys FPGA Express 3.5 and Xilinx
Foundation Series 3.3i. The design was verified using
the Synopsys VHDL Simulator and successfully imple-
mented on Pilchard board. All implementations were
tested using Pilchard cards populated with a Xilinx
XCV1000E-6 device.

A study of area and speed tradeoffs for a single DES
core with different degrees of unrolling (i.e. different
numbers of rounds) was conducted (see Figure 6). Ta-
ble 2 shows the performance of DES cores with differ-
ent numbers of combinatorial rounds in ECB mode.
As can be seen, the throughput is rather low if only 1
round is used due to overheads associated with regis-
tering the intermediate values. If 2 to 16 combinato-
rial rounds are used, the throughput is roughly con-
stant at around 400 Mb/sec. A DES core design with
16 combinatorial rounds was selected for the triple-
DES implementation since there were sufficient logic
resources on an XCV1000 device, and a totally com-
binatorial DES core is slightly easier to incorporate in
the triple-DES design.

From Table 2, the performance is similar among
the DES cores. Therefore, a core with 16 rounds was
chosen since it has a simpler control and host interface.

The triple-DES CBC core uses three combinational
DES cores with 16 combinational rounds. It requires
5368 Virtex slices, which is 43.68% of the total 12288
slices in a Xilinx Virtex-E XCV100E device, and oper-
ates at 2.135 MHz, and thus has a maximum through-
put of 2.135 MHz× 64-bit = 136.64 Mb/sec.

The triple-DES accelerator was tested on the ma-



Table 2: Area and Speed tradeoffs among DES cores with different numbers of rounds.

Number of Area Clock rate Throughput
combinational rounds (slices) (Mb/sec)
1 747 58.42 233.68
2 765 51.3 410.4
4 877 23.38 374.08
8 1121 12.32 394.24
16 1666 5.94 380.16

chine described in Table 1. The Linux kernel function
do gettimeofday() was used for timing. As shown in
Figure 7, the performance of the triple-DES acceler-
ator for small amounts of data is much lower than
software. As the data size increases, the performance
increases quickly and achieves a higher performance
than software, achieving a maximum throughput of
over 120 Mb/sec for the encryption of 7 KB of data.
For even larger encryption blocks, the performance ap-
proaches the maximum performance of the triple-DES
core which is 136 MB/sec. From these measurements,
we can also conclude that the host to FPGA interface
provided by Pilchard does not impose a bottleneck on
the system.

5.3 FreeS/WAN Benchmarks

In tests using FreeS/WAN, the encryption algo-
rithm was chosen to be triple-DES in CBC mode and
the authentication algorithm MD5-96. This configu-
ration is referred as 3des-md5-96 in FreeS/WAN and is
the default encryption and authentication mode sug-
gested by FreeS/WAN.

ttcp [12, 13] was used to measure the throughput of
the system and benchmarks were conducted for both
TCP and UDP protocols. Different parameters for
ttcp were selected and tested and it was found that
they did not have major effect on the results. As a
result, the benchmarks were conducted using the de-
fault settings of 8192 (source buffer) and 2048 (net-
work buffer) bytes respectively. Another utility, iperf,
was used to verify the results obtained by ttcp.

For every packet sent out in single way connection,
an acknowledgment packet is received. The acknowl-
edgment packet is small in size and does not favor the
use of triple-DES accelerator. For TCP, we estimate
that 50% of the total number of packets are small
packets because there is an acknowledgement for all
packets sent. Note also that during the benchmark,
the only traffic on the network was that generated by

our testing software so no collisions are likely to occur.
Thus for the encryption of small blocks of data, the

software implementation in LibDES rather than the
hardware accelerator was used. Unfortunately, this
limits the speedup which can be obtained.

In Table 3 it can be seen that the UDP performance
of FreeS/WAN without IPSec is close to the maxi-
mum bandwidth of a 100 Mbit network, and for TCP,
67 Mb/sec is achieved. When encryption is used, the
performance of both TCP and UDP falls by approxi-
mately 50%. Thus it can be concluded that encryption
limits the speed of the VPN. The large difference in
throughput between TCP and UDP was unexpected.
Although we are uncertain as to the cause of this in-
efficiency, it is consistent with other published results
[14].

Table 4 shows the performance of FreeS/WAN us-
ing the triple-DES accelerator, measured with ttcp.
The hardware accelerated version offers a 30% im-
provement for the TCP protocol over the original soft-
ware implementation and a 16% improvement for the
UDP protocol.

This result was somewhat disappointing since the
FPGA based accelerator was three times faster than
the software implementation. We attribute the poor
performance to the following issues:

• The triple-DES encryption only accounts for 50%
of the VPN’s total computation time. Amdahl’s
law applies to parallel computing and states that
if α is the fraction of the computation that can-
not be parallelized and P are the number of par-
allel processors, then the maximum speedup S
that can be achieved is given by S = 1

α+(1−α)/P .

Adapting this idea to the VPN accelerator case
with P = 3 (the accelerator is 3× faster than soft-
ware) and α = 0.5, one can see that a maximum
speedup of 50% can be achieved.

• The speedup of the accelerator over software (Fig-
ure 7) is not constant. For small packets, P < 3
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Figure 7: Performance of triple-DES accelerator for different encryption sizes.

Table 3: ttcp measured performance with and without FreeS/WAN

Protocol Side Throughput Throughput Performance
no encryption with encryption degradation
(in Mb/sec) (in Mb/sec) (%)

TCP sender 67.024 35.448 47.72
TCP receiver 66.968 35.360 47.19
UDP sender 93.848 45.560 51.45
UDP receiver 93.536 45.536 51.32

Table 4: Benchmark of ttcp with FreeS/WAN using Pilchard based accelerator

Protocol Side Throughput Performance
Mb/sec Improvement (%)

TCP sender 45.788 29.1
TCP receiver 45.660 29.1
UDP sender 53.021 16.4
UDP receiver 52.882 16.1



and our computed α is in fact greater than 0.5.
Thus the maximum speedup obtainable is actu-
ally less than 50% for our accelerator since in
practice, there are a large number of small packets
to be encrypted.

6 Conclusion

The objective of this work was to develop an
FPGA-based accelerator for virtual private network
and explore systems issues in its integration. A
hardware implementation of a triple-DES accelera-
tor in CBC mode implemented on the Pilchard plat-
form achieved a maximum throughput of more than
120 Mb/sec which was 3× faster than that of the
highly optimized LibDES software implementation on
an 866 MHz Pentium III machine. This FPGA-
accelerated core was integrated with the FreeS/WAN
VPN implementation. The resulting system offered a
1.3× and 1.16× improvement in end-to-end through-
put for the TCP and UDP protocols respectively, the
performance being limited by the latency of our bus
interface, limiting speedups to be achievable only for
large packets. Faster hardware accelerators with bet-
ter performance on small packets could lead to further
gains, with improvements up to a doubling in through-
put being possible.
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